添加反射率定标

This commit is contained in:
2025-03-26 09:27:34 +08:00
parent 09256a1972
commit 7558731dc4
642 changed files with 104260 additions and 255 deletions

View File

@ -0,0 +1 @@
{"type": "library", "name": "InterpolationLib", "version": "1.0.2", "spec": {"owner": "luisllamasbinaburo", "id": 6733, "name": "InterpolationLib", "requirements": null, "uri": null}}

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,83 @@
# Arduino Interpolation Library
Arduino library that provides interpolation methods step, linear, smooth, catmull spline and constrained spline.
All methods recieves X-Values and Y-Values, the size of this arrays and the X point to interpolate, and return the estimated Y at the point X.
## Modes
### Step
Simple step interpolation. Estimated value is Yn-1 or Yn. The relative 'change point' int he interval (or threshold) is an optional parameter. 0.0 means change at the start of the interval, 1.0 at the and of the interval, and 0.5 in the mid point interval.
![Image](https://github.com/luisllamasbinaburo/Arduino-Interpolation/blob/master/images/arduino-interpolation-step.png)
### Linear
Linear interpolation. Adicional parameter controls the interpolation out of the provided X-Values arrays.
![Image](https://github.com/luisllamasbinaburo/Arduino-Interpolation/blob/master/images/arduino-interpolation-linear.png)
### Smooth
Applies a cubic smooth step between value changes
![Image](https://github.com/luisllamasbinaburo/Arduino-Interpolation/blob/master/images/arduino-interpolation-smooth.png)
### Catmull spline
Typical Catmull spline interpolation
![Image](https://github.com/luisllamasbinaburo/Arduino-Interpolation/blob/master/images/arduino-interpolation-catmull-spline.png)
### Constrained spline
A special kind of spline that doesn't overshoot
![Image](https://github.com/luisllamasbinaburo/Arduino-Interpolation/blob/master/images/arduino-interpolation-constrained-spline.png)
## Example
```c++
#include "InterpolationLib.h"
const int numValues = 10;
double xValues[10] = { 5, 12, 30, 50, 60, 70, 74, 84, 92, 100 };
double yValues[10] = { 150, 200, 200, 200, 180, 100, 100, 150, 220, 320 };
void setup()
{
while (!Serial) { ; }
Serial.begin(115200);
for (float xValue = 0; xValue <= 110; xValue += .25)
{
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 0.0));
Serial.print(',');
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 0.5));
Serial.print(',');
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 1.0));
Serial.print(',');
Serial.print(Interpolation::SmoothStep(xValues, yValues, numValues, xValue));
Serial.print(',');
Serial.print(Interpolation::Linear(xValues, yValues, numValues, xValue, false));
Serial.print(',');
Serial.print(Interpolation::Linear(xValues, yValues, numValues, xValue, true));
Serial.print(',');
Serial.print(Interpolation::CatmullSpline(xValues, yValues, numValues, xValue));
Serial.print(',');
Serial.println(Interpolation::ConstrainedSpline(xValues, yValues, numValues, xValue));
}
}
void loop()
{
}
```
## Auxiliar tools
Aditional utils
### Float map
A simple map function that uses templates, so it works with integer (like normal 'map' function), float, double, or any other comparable type.
```c++
Interpolation::Map<float>(2.0, 0.0, 10, 100, 200)
```
### Range generator
A simple utility that generates static double arrays with fixed size, and values between 'min' and 'max'. Useful for fast generating
homogeneously distributed X-values arrays to use as parameter in the interpolations methods.
```c++
double* ptr = Range<size>::Generate(min, max);
```

View File

@ -0,0 +1,41 @@
/***************************************************
Copyright (c) 2019 Luis Llamas
(www.luisllamas.es)
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
****************************************************/
#include "InterpolationLib.h"
const int numValues = 10;
double xValues[10] = { 5, 12, 30, 50, 60, 70, 74, 84, 92, 100 };
double yValues[10] = { 150, 200, 200, 200, 180, 100, 100, 150, 220, 320 };
void setup()
{
while (!Serial) { ; }
Serial.begin(115200);
for (float xValue = 0; xValue <= 110; xValue += .25)
{
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 0.0));
Serial.print(',');
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 0.5));
Serial.print(',');
Serial.print(Interpolation::Step(xValues, yValues, numValues, xValue, 1.0));
Serial.print(',');
Serial.print(Interpolation::SmoothStep(xValues, yValues, numValues, xValue));
Serial.print(',');
Serial.print(Interpolation::Linear(xValues, yValues, numValues, xValue, false));
Serial.print(',');
Serial.print(Interpolation::Linear(xValues, yValues, numValues, xValue, true));
Serial.print(',');
Serial.print(Interpolation::CatmullSpline(xValues, yValues, numValues, xValue));
Serial.print(',');
Serial.println(Interpolation::ConstrainedSpline(xValues, yValues, numValues, xValue));
}
}
void loop()
{
}

View File

@ -0,0 +1,20 @@
/***************************************************
Copyright (c) 2019 Luis Llamas
(www.luisllamas.es)
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
****************************************************/
#include "InterpolationLib.h"
void setup()
{
while (!Serial) { ; }
Serial.begin(115200);
Serial.print(Interpolation::Map<float>(2.0, 0.0, 10, 100, 200));
}
void loop()
{
}

View File

@ -0,0 +1,24 @@
/***************************************************
Copyright (c) 2019 Luis Llamas
(www.luisllamas.es)
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
****************************************************/
#include "InterpolationLib.h"
void setup()
{
while (!Serial) { ; }
Serial.begin(115200);
double* ptr = Range<10>::Generate(3, 4);
for (auto i = 0; i < 10; i++)
{
Serial.println(ptr[i]);
}
}
void loop()
{
}

View File

@ -0,0 +1,22 @@
#######################################
# Syntax Coloring Map MyName
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Interpolation KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
function KEYWORD2
Step KEYWORD2
SmoothStep KEYWORD2
Linear KEYWORD2
CatmullSpline KEYWORD2
ConstrainedSpline KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

View File

@ -0,0 +1,9 @@
name=InterpolationLib
version=1.0.2
author=Luis Llamas
maintainer=Luis Llamas
sentence=Arduino library that provides interpolation methods step, linear, smooth, catmull spline and constrained spline.
paragraph=Arduino library that provides interpolation methods step, linear, smooth, catmull spline and constrained spline.
category=Other
url=https://github.com/luisllamasbinaburo/Arduino-Interpolation
architectures=*

View File

@ -0,0 +1,272 @@
/***************************************************
Copyright (c) 2019 Luis Llamas
(www.luisllamas.es)
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
****************************************************/
#include "InterpolationLib.h"
double Interpolation::Step(double xValues[], double yValues[], int numValues, double pointX, double threshold)
{
// extremos
if (pointX <= xValues[0]) return yValues[0];
if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
auto i = 0;
while (pointX >= xValues[i + 1]) i++;
if (pointX == xValues[i + 1]) return yValues[i + 1]; // coincidencia exacta
auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]); // punto relativo en el intervalo
return t < threshold ? yValues[i] : yValues[i + 1];
}
double Interpolation::Linear(double xValues[], double yValues[], int numValues, double pointX, bool trim)
{
if (trim)
{
if (pointX <= xValues[0]) return yValues[0];
if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
}
auto i = 0;
double rst = 0;
if (pointX <= xValues[0])
{
i = 0;
auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]);
rst = yValues[i] * (1 - t) + yValues[i + 1] * t;
}
else if (pointX >= xValues[numValues - 1])
{
auto t = (pointX - xValues[numValues - 2]) / (xValues[numValues - 1] - xValues[numValues - 2]);
rst = yValues[numValues - 2] * (1 - t) + yValues[numValues - 1] * t;
}
else
{
while (pointX >= xValues[i + 1]) i++;
auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]);
rst = yValues[i] * (1 - t) + yValues[i + 1] * t;
}
return rst;
}
double Interpolation::SmoothStep(double xValues[], double yValues[], int numValues, double pointX, bool trim)
{
if (trim)
{
if (pointX <= xValues[0]) return yValues[0];
if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
}
auto i = 0;
if (pointX <= xValues[0]) i = 0;
else if (pointX >= xValues[numValues - 1]) i = numValues - 1;
else while (pointX >= xValues[i + 1]) i++;
if (pointX == xValues[i + 1]) return yValues[i + 1];
auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]);
t = t * t * (3 - 2 * t);
return yValues[i] * (1 - t) + yValues[i + 1] * t;
}
// double Interpolation::CatmullSpline(double xValues[], double yValues[], int numValues, double pointX, bool trim);
// double Interpolation::CatmullSpline(double xValues[], double yValues[], int numValues, double pointX, bool trim)
// {
// if (trim)
// {
// if (pointX <= xValues[0]) return yValues[0];
// if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
// }
// auto i = 0;
// if (pointX <= xValues[0]) i = 0;
// else if (pointX >= xValues[numValues - 1]) i = numValues - 1;
// else while (pointX >= xValues[i + 1]) i++;
// if (pointX == xValues[i + 1]) return yValues[i + 1];
// auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]);
// auto t_2 = t * t;
// auto t_3 = t_2 * t;
// auto h00 = 2 * t_3 - 3 * t_2 + 1;
// auto h10 = t_3 - 2 * t_2 + t;
// auto h01 = 3 * t_2 - 2 * t_3;
// auto h11 = t_3 - t_2;
// auto x0 = xValues[i];
// auto x1 = xValues[i + 1];
// auto y0 = yValues[i];
// auto y1 = yValues[i + 1];
// double m0;
// double m1;
// if (i == 0)
// {
// m0 = (yValues[1] - yValues[0]) / (xValues[1] - xValues[0]);
// m1 = (yValues[2] - yValues[0]) / (xValues[2] - xValues[0]);
// }
// else if (i == numValues - 2)
// {
// m0 = (yValues[numValues - 1] - yValues[numValues - 3]) / (xValues[numValues - 1] - xValues[numValues - 3]);
// m1 = (yValues[numValues - 1] - yValues[numValues - 2]) / (xValues[numValues - 1] - xValues[numValues - 2]);
// }
// else
// {
// m0 = catmullSlope(xValues, yValues, numValues, i);
// m1 = catmullSlope(xValues, yValues, numValues, i + 1);
// }
// auto rst = h00 * y0 + h01 * y1 + h10 * (x1 - x0) * m0 + h11 * (x1 - x0) * m1;
// return rst;
// }
float Interpolation::CatmullSpline(float xValues[], float yValues[], int numValues, float pointX, bool trim)
{
if (trim)
{
if (pointX <= xValues[0]) return yValues[0];
if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
}
auto i = 0;
if (pointX <= xValues[0]) i = 0;
else if (pointX >= xValues[numValues - 1]) i = numValues - 1;
else while (pointX >= xValues[i + 1]) i++;
if (pointX == xValues[i + 1]) return yValues[i + 1];
auto t = (pointX - xValues[i]) / (xValues[i + 1] - xValues[i]);
auto t_2 = t * t;
auto t_3 = t_2 * t;
auto h00 = 2 * t_3 - 3 * t_2 + 1;
auto h10 = t_3 - 2 * t_2 + t;
auto h01 = 3 * t_2 - 2 * t_3;
auto h11 = t_3 - t_2;
auto x0 = xValues[i];
auto x1 = xValues[i + 1];
auto y0 = yValues[i];
auto y1 = yValues[i + 1];
double m0;
double m1;
if (i == 0)
{
m0 = (yValues[1] - yValues[0]) / (xValues[1] - xValues[0]);
m1 = (yValues[2] - yValues[0]) / (xValues[2] - xValues[0]);
}
else if (i == numValues - 2)
{
m0 = (yValues[numValues - 1] - yValues[numValues - 3]) / (xValues[numValues - 1] - xValues[numValues - 3]);
m1 = (yValues[numValues - 1] - yValues[numValues - 2]) / (xValues[numValues - 1] - xValues[numValues - 2]);
}
else
{
m0 = catmullSlope(xValues, yValues, numValues, i);
m1 = catmullSlope(xValues, yValues, numValues, i + 1);
}
auto rst = h00 * y0 + h01 * y1 + h10 * (x1 - x0) * m0 + h11 * (x1 - x0) * m1;
return rst;
}
double Interpolation::catmullSlope(float x[], float y[], int n, int i)
{
if (x[i + 1] == x[i - 1]) return 0;
return (y[i + 1] - y[i - 1]) / (x[i + 1] - x[i - 1]);
}
// double Interpolation::catmullSlope(double x[], double y[], int n, int i)
// {
// if (x[i + 1] == x[i - 1]) return 0;
// return (y[i + 1] - y[i - 1]) / (x[i + 1] - x[i - 1]);
// }
double Interpolation::ConstrainedSpline(double xValues[], double yValues[], int numValues, double pointX, bool trim)
{
if (trim)
{
if (pointX <= xValues[0]) return yValues[0];
if (pointX >= xValues[numValues - 1]) return yValues[numValues - 1];
}
//auto i = 0;
//while (pointX >= xValues[i + 1]) i++;
//if (pointX == xValues[i + 1]) return yValues[i + 1];
auto i = 0;
if (pointX <= xValues[0]) i = 0;
else if (pointX >= xValues[numValues - 1]) i = numValues - 1;
else while (pointX >= xValues[i + 1]) i++;
if (pointX == xValues[i + 1]) return yValues[i + 1];
auto x0 = xValues[i + 1];
auto x1 = xValues[i];
auto y0 = yValues[i + 1];
auto y1 = yValues[i];
auto fd2i_xl1 = getLeftSecondDerivate(xValues, yValues, numValues - 1, i + 1);
auto fd2i_x = getRightSecondDerivate(xValues, yValues, numValues - 1, i + 1);
auto d = (fd2i_x - fd2i_xl1) / (6.0f * (x0 - x1));
auto c = (x0 * fd2i_xl1 - x1 * fd2i_x) / 2.0f / (x0 - x1);
auto b = (y0 - y1 - c * (x0 * x0 - x1 * x1) - d * (x0 * x0 * x0 - x1 * x1 * x1)) / (x0 - x1);
auto a = y1 - b * x1 - c * x1 * x1 - d * x1 * x1 * x1;
auto rst = a + pointX * (b + pointX * (c + pointX * d));
return rst;
}
double Interpolation::getFirstDerivate(double x[], double y[], int n, int i)
{
double fd1_x;
if (i == 0)
{
fd1_x = 3.0f / 2.0f * (y[1] - y[0]) / (x[1] - x[0]);
fd1_x -= getFirstDerivate(x, y, n, 1) / 2.0f;
}
else if (i == n)
{
fd1_x = 3.0f / 2.0f * (y[n] - y[n - 1]) / (x[n] - x[n - 1]);
fd1_x -= getFirstDerivate(x, y, n, n - 1) / 2.0f;
}
else
{
if ((x[i + 1] - x[i]) / (y[i + 1] - y[i]) * (x[i] - x[i - 1]) / (y[i] - y[i - 1]) < 0)
{
fd1_x = 0;
}
else
{
fd1_x = 2.0f / ((x[i + 1] - x[i]) / (y[i + 1] - y[i]) + (x[i] - x[i - 1]) / (y[i] - y[i - 1]));
}
}
return fd1_x;
}
double Interpolation::getLeftSecondDerivate(double x[], double y[], int n, int i)
{
auto fdi_x = getFirstDerivate(x, y, n, i);
auto fdi_xl1 = getFirstDerivate(x, y, n, i - 1);
auto fd2l_x = -2.0f * (fdi_x + 2.0f * fdi_xl1) / (x[i] - x[i - 1]);
fd2l_x += 6.0f * (y[i] - y[i - 1]) / (x[i] - x[i - 1]) / (x[i] - x[i - 1]);
return fd2l_x;
}
double Interpolation::getRightSecondDerivate(double x[], double y[], int numValues, int i)
{
auto fdi_x = getFirstDerivate(x, y, numValues, i);
auto fdi_xl1 = getFirstDerivate(x, y, numValues, i - 1);
auto fd2r_x = 2.0f * (2.0f * fdi_x + fdi_xl1) / (x[i] - x[i - 1]);
fd2r_x -= 6.0f * (y[i] - y[i - 1]) / (x[i] - x[i - 1]) / (x[i] - x[i - 1]);
return fd2r_x;
}

View File

@ -0,0 +1,95 @@
/***************************************************
Copyright (c) 2019 Luis Llamas
(www.luisllamas.es)
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
****************************************************/
#ifndef _INTERPOLATIONLIB_h
#define _INTERPOLATIONLIB_h
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
template<size_t n>
struct Range
{
double list[n];
Range()
{
for (size_t m = 0; m != n; ++m)
{
list[m] = m + 1;
}
}
Range(double min, double max)
{
for (size_t m = 0; m < n; ++m)
{
list[m] = min + (max - min) / (n - 1) * m;
}
}
double& operator[](size_t index)
{
return list[index];
}
double* ToArray()
{
return list;
}
static double* Generate(double min, double max)
{
Range<10> range(min, max);
return range.ToArray();
}
};
class Interpolation
{
public:
template <typename T>
static T Map(T x, T in_min, T in_max, T out_min, T out_max);
static double Step(double yValues[], int numValues, double pointX, double threshold = 1);
static double Step(double minX, double maxX, double yValues[], int numValues, double pointX, double threshold = 1);
static double Step(double xValues[], double yValues[], int numValues, double pointX, double threshold = 1);
static double Linear(double yValues[], int numValues, double pointX, bool trim = true);
static double Linear(double minX, double maxX, double yValues[], int numValues, double pointX, bool trim = true);
static double Linear(double xValues[], double yValues[], int numValues, double pointX, bool trim = true);
static double SmoothStep(double xValues[], double yValues[], int numValues, double pointX, bool trim = true);
// static double CatmullSpline(double xValues[], double yValues[], int numValues, double pointX, bool trim = true);
static double ConstrainedSpline(double xValues[], double yValues[], int numValues, double pointX, bool trim = true);
static float CatmullSpline(float xValues[], float yValues[], int numValues, float pointX, bool trim = true);///////////////////////////
private:
// static double catmullSlope(double x[], double y[], int n, int i);
static double catmullSlope(float x[], float y[], int n, int i);///////////////////////////
static double getFirstDerivate(double x[], double y[], int n, int i);
static double getLeftSecondDerivate(double x[], double y[], int n, int i);
static double getRightSecondDerivate(double x[], double y[], int n, int i);
};
// Esto esta aqui porque Arduino la lia con los Templates
template <typename T>
T Interpolation::Map(T x, T in_min, T in_max, T out_min, T out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
#endif