v2.9
This commit is contained in:
169
lib/EspSoftwareSerial/README.md
Normal file
169
lib/EspSoftwareSerial/README.md
Normal file
@ -0,0 +1,169 @@
|
||||
# EspSoftwareSerial
|
||||
|
||||
## Implementation of the Arduino software serial library for the ESP8266 / ESP32 family
|
||||
|
||||
This fork implements interrupt service routine best practice.
|
||||
In the receive interrupt, instead of blocking for whole bytes
|
||||
at a time - voiding any near-realtime behavior of the CPU - only level
|
||||
change and timestamp are recorded. The more time consuming phase
|
||||
detection and byte assembly are done in the main code.
|
||||
|
||||
Except at high bitrates, depending on other ongoing activity,
|
||||
interrupts in particular, this software serial adapter
|
||||
supports full duplex receive and send. At high bitrates (115200bps)
|
||||
send bit timing can be improved at the expense of blocking concurrent
|
||||
full duplex receives, with the `SoftwareSerial::enableIntTx(false)` function call.
|
||||
|
||||
The same functionality is given as the corresponding AVR library but
|
||||
several instances can be active at the same time. Speed up to 115200 baud
|
||||
is supported. Besides a constructor compatible to the AVR SoftwareSerial class,
|
||||
and updated constructor that takes no arguments exists, instead the `begin()`
|
||||
function can handle the pin assignments and logic inversion.
|
||||
It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer.
|
||||
This way, it is a better drop-in replacement for the hardware serial APIs on the ESP MCUs.
|
||||
|
||||
Please note that due to the fact that the ESPs always have other activities
|
||||
ongoing, there will be some inexactness in interrupt timings. This may
|
||||
lead to inevitable, but few, bit errors when having heavy data traffic
|
||||
at high baud rates.
|
||||
|
||||
This library supports ESP8266, ESP32, ESP32-S2 and ESP32-C3 devices.
|
||||
|
||||
## Resource optimization
|
||||
|
||||
The memory footprint can be optimized to just fit the amount of expected
|
||||
incoming asynchronous data.
|
||||
For this, the `SoftwareSerial` constructor provides two arguments. First, the
|
||||
octet buffer capacity for assembled received octets can be set. Read calls are
|
||||
satisfied from this buffer, freeing it in return.
|
||||
Second, the signal edge detection buffer of 32bit fields can be resized.
|
||||
One octet may require up to to 10 fields, but fewer may be needed,
|
||||
depending on the bit pattern. Any read or write calls check this buffer
|
||||
to assemble received octets, thus promoting completed octets to the octet
|
||||
buffer, freeing fields in the edge detection buffer.
|
||||
|
||||
Look at the swsertest.ino example. There, on reset, ASCII characters ' ' to 'z'
|
||||
are sent. This happens not as a block write, but in a single write call per
|
||||
character. As the example uses a local loopback wire, every outgoing bit is
|
||||
immediately received back. Therefore, any single write call causes up to
|
||||
10 fields - depending on the exact bit pattern - to be occupied in the signal
|
||||
edge detection buffer. In turn, as explained before, each single write call
|
||||
also causes received bit assembly to be performed, promoting these bits from
|
||||
the signal edge detection buffer to the octet buffer as soon as possible.
|
||||
Explaining by way of contrast, if during a a single write call, perhaps because
|
||||
of using block writing, more than a single octet is received, there will be a
|
||||
need for more than 10 fields in the signal edge detection buffer.
|
||||
The necessary capacity of the octet buffer only depends on the amount of incoming
|
||||
data until the next read call.
|
||||
|
||||
For the swsertest.ino example, this results in the following optimized
|
||||
constructor arguments to spend only the minimum RAM on buffers required:
|
||||
|
||||
The octet buffer capacity (`bufCapacity`) is 95 (93 characters net plus two tolerance).
|
||||
The signal edge detection buffer capacity (`isrBufCapacity`) is 11, as each
|
||||
single octet can have up to 11 bits on the wire,
|
||||
which are immediately received during the write, and each
|
||||
write call causes the signal edge detection to promote the previously sent and
|
||||
received bits to the octet buffer.
|
||||
|
||||
In a more generalized scenario, calculate the bits (use message size in octets
|
||||
times 10) that may be asynchronously received to determine the value for
|
||||
`isrBufCapacity` in the constructor. Also use the number of received octets
|
||||
that must be buffered for reading as the value of `bufCapacity`.
|
||||
The more frequently your code calls write or read functions, the greater the
|
||||
chances are that you can reduce the `isrBufCapacity` footprint without losing data,
|
||||
and each time you call read to fetch from the octet buffer, you reduce the
|
||||
need for space there.
|
||||
|
||||
## SoftwareSerialConfig and parity
|
||||
The configuration of the data stream is done via a `SoftwareSerialConfig`
|
||||
argument to `begin()`. Word lengths can be set to between 5 and 8 bits, parity
|
||||
can be N(one), O(dd) or E(ven) and 1 or 2 stop bits can be used. The default is
|
||||
`SWSERIAL_8N1` using 8 bits, no parity and 1 stop bit but any combination can
|
||||
be used, e.g. `SWSERIAL_7E2`. If using EVEN or ODD parity, any parity errors
|
||||
can be detected with the `readParity()` and `parityEven()` or `parityOdd()`
|
||||
functions respectively. Note that the result of `readParity()` always applies
|
||||
to the preceding `read()` or `peek()` call, and is undefined if they report
|
||||
no data or an error.
|
||||
|
||||
To allow flexible 9-bit and data/addressing protocols, the additional parity
|
||||
modes MARK and SPACE are also available. Furthermore, the parity mode can be
|
||||
individually set in each call to `write()`.
|
||||
|
||||
This allows a simple implementation of protocols where the parity bit is used to
|
||||
distinguish between data and addresses/commands ("9-bit" protocols). First set
|
||||
up SoftwareSerial with parity mode SPACE, e.g. `SWSERIAL_8S1`. This will add a
|
||||
parity bit to every byte sent, setting it to logical zero (SPACE parity).
|
||||
|
||||
To detect incoming bytes with the parity bit set (MARK parity), use the
|
||||
`readParity()` function. To send a byte with the parity bit set, just add
|
||||
`MARK` as the second argument when writing, e.g. `write(ch, SWSERIAL_PARITY_MARK)`.
|
||||
|
||||
## Checking for correct pin selection / configuration
|
||||
In general, most pins on the ESP8266 and ESP32 devices can be used by SoftwareSerial,
|
||||
however each device has a number of pins that have special functions or require careful
|
||||
handling to prevent undesirable situations, for example they are connected to the
|
||||
on-board SPI flash memory or they are used to determine boot and programming modes
|
||||
after powerup or brownouts. These pins are not able to be configured by this library.
|
||||
|
||||
The exact list for each device can be found in the
|
||||
[ESP32 data sheet](https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf)
|
||||
in sections 2.2 (Pin Descriptions) and 2.4 (Strapping pins). There is a discussion
|
||||
dedicated to the use of GPIO12 in this
|
||||
[note about GPIO12](https://github.com/espressif/esp-idf/tree/release/v3.2/examples/storage/sd_card#note-about-gpio12).
|
||||
Refer to the `isValidGPIOpin()`, `isValidRxGPIOpin()` and `isValidTxGPIOpin()`
|
||||
functions for the GPIO restrictions enforced by this library by default.
|
||||
|
||||
The easiest and safest method is to test the object returned at runtime, to see if
|
||||
it is valid. For example:
|
||||
|
||||
```
|
||||
#include <SoftwareSerial.h>
|
||||
|
||||
#define MYPORT_TX 12
|
||||
#define MYPORT_RX 13
|
||||
|
||||
SoftwareSerial myPort;
|
||||
|
||||
[...]
|
||||
|
||||
Serial.begin(115200); // Standard hardware serial port
|
||||
|
||||
myPort.begin(38400, SWSERIAL_8N1, MYPORT_RX, MYPORT_TX, false);
|
||||
if (!myPort) { // If the object did not initialize, then its configuration is invalid
|
||||
Serial.println("Invalid SoftwareSerial pin configuration, check config");
|
||||
while (1) { // Don't continue with invalid configuration
|
||||
delay (1000);
|
||||
}
|
||||
}
|
||||
|
||||
[...]
|
||||
```
|
||||
|
||||
## Using and updating EspSoftwareSerial in the esp8266com/esp8266 Arduino build environment
|
||||
|
||||
EspSoftwareSerial is both part of the BSP download for ESP8266 in Arduino,
|
||||
and it is set up as a Git submodule in the esp8266 source tree,
|
||||
specifically in `.../esp8266/libraries/SoftwareSerial` when using a Github
|
||||
repository clone in your Arduino sketchbook hardware directory.
|
||||
This supersedes any version of EspSoftwareSerial installed for instance via
|
||||
the Arduino library manager, it is not required to install EspSoftwareSerial
|
||||
for the ESP8266 separately at all, but doing so has ill effect.
|
||||
|
||||
The responsible maintainer of the esp8266 repository has kindly shared the
|
||||
following command line instructions to use, if one wishes to manually
|
||||
update EspSoftwareSerial to a newer release than pulled in via the ESP8266 Arduino BSP:
|
||||
|
||||
To update esp8266/arduino SoftwareSerial submodule to lastest master:
|
||||
|
||||
Clean it (optional):
|
||||
```shell
|
||||
$ rm -rf libraries/SoftwareSerial
|
||||
$ git submodule update --init
|
||||
```
|
||||
Now update it:
|
||||
```shell
|
||||
$ cd libraries/SoftwareSerial
|
||||
$ git checkout master
|
||||
$ git pull
|
||||
```
|
Reference in New Issue
Block a user