Files
smartweatherstation_v2.0/lib/SparkFun u-blox Arduino Library/examples/ZED-F9P/Example11_GetHighPrecisionPositionUsingDouble/Example11_GetHighPrecisionPositionUsingDouble.ino
2025-07-08 08:54:35 +08:00

147 lines
6.0 KiB
C++

/*
Get the high precision geodetic solution for latitude and longitude using double
By: Nathan Seidle
Modified by: Paul Clark (PaulZC)
SparkFun Electronics
Date: April 17th, 2020
License: MIT. See license file for more information but you can
basically do whatever you want with this code.
This example shows how to inspect the accuracy of the high-precision
positional solution. Please see below for information about the units.
** This example will only work correctly on platforms which support 64-bit double **
Feel like supporting open source hardware?
Buy a board from SparkFun!
ZED-F9P RTK2: https://www.sparkfun.com/products/15136
NEO-M8P RTK: https://www.sparkfun.com/products/15005
Hardware Connections:
Plug a Qwiic cable into the GPS and (e.g.) a Redboard Artemis https://www.sparkfun.com/products/15444
or an Artemis Thing Plus https://www.sparkfun.com/products/15574
If you don't have a platform with a Qwiic connection use the SparkFun Qwiic Breadboard Jumper (https://www.sparkfun.com/products/14425)
Open the serial monitor at 115200 baud to see the output
*/
#include <Wire.h> // Needed for I2C to GPS
#define myWire Wire // This will work on the Redboard Artemis and the Artemis Thing Plus using Qwiic
//#define myWire Wire1 // Uncomment this line if you are using the extra SCL1/SDA1 pins (D17 and D16) on the Thing Plus
#include "SparkFun_Ublox_Arduino_Library.h" //http://librarymanager/All#SparkFun_u-blox_GNSS
SFE_UBLOX_GPS myGPS;
long lastTime = 0; //Simple local timer. Limits amount if I2C traffic to Ublox module.
void setup()
{
Serial.begin(115200);
while (!Serial); //Wait for user to open terminal
myWire.begin();
//myGPS.enableDebugging(Serial); // Uncomment this line to enable debug messages
if (myGPS.begin(myWire) == false) //Connect to the Ublox module using Wire port
{
Serial.println(F("Ublox GPS not detected at default I2C address. Please check wiring. Freezing."));
while (1)
;
}
// Check that this platform supports 64-bit (8 byte) double
if (sizeof(double) < 8)
{
Serial.println(F("Warning! Your platform does not support 64-bit double."));
Serial.println(F("The latitude and longitude will be inaccurate."));
}
myGPS.setI2COutput(COM_TYPE_UBX); //Set the I2C port to output UBX only (turn off NMEA noise)
//myGPS.setNavigationFrequency(20); //Set output to 20 times a second
byte rate = myGPS.getNavigationFrequency(); //Get the update rate of this module
Serial.print("Current update rate: ");
Serial.println(rate);
//myGPS.saveConfiguration(); //Save the current settings to flash and BBR
}
void loop()
{
//Query module only every second.
//The module only responds when a new position is available.
if (millis() - lastTime > 1000)
{
lastTime = millis(); //Update the timer
// getHighResLatitude: returns the latitude from HPPOSLLH as an int32_t in degrees * 10^-7
// getHighResLatitudeHp: returns the high resolution component of latitude from HPPOSLLH as an int8_t in degrees * 10^-9
// getHighResLongitude: returns the longitude from HPPOSLLH as an int32_t in degrees * 10^-7
// getHighResLongitudeHp: returns the high resolution component of longitude from HPPOSLLH as an int8_t in degrees * 10^-9
// getElipsoid: returns the height above ellipsoid as an int32_t in mm
// getElipsoidHp: returns the high resolution component of the height above ellipsoid as an int8_t in mm * 10^-1
// getMeanSeaLevel: returns the height above mean sea level as an int32_t in mm
// getMeanSeaLevelHp: returns the high resolution component of the height above mean sea level as an int8_t in mm * 10^-1
// getHorizontalAccuracy: returns the horizontal accuracy estimate from HPPOSLLH as an uint32_t in mm * 10^-1
// First, let's collect the position data
int32_t latitude = myGPS.getHighResLatitude();
int8_t latitudeHp = myGPS.getHighResLatitudeHp();
int32_t longitude = myGPS.getHighResLongitude();
int8_t longitudeHp = myGPS.getHighResLongitudeHp();
int32_t ellipsoid = myGPS.getElipsoid();
int8_t ellipsoidHp = myGPS.getElipsoidHp();
int32_t msl = myGPS.getMeanSeaLevel();
int8_t mslHp = myGPS.getMeanSeaLevelHp();
uint32_t accuracy = myGPS.getHorizontalAccuracy();
// Defines storage for the lat and lon as double
double d_lat; // latitude
double d_lon; // longitude
// Assemble the high precision latitude and longitude
d_lat = ((double)latitude) / 10000000.0; // Convert latitude from degrees * 10^-7 to degrees
d_lat += ((double)latitudeHp) / 1000000000.0; // Now add the high resolution component (degrees * 10^-9 )
d_lon = ((double)longitude) / 10000000.0; // Convert longitude from degrees * 10^-7 to degrees
d_lon += ((double)longitudeHp) / 1000000000.0; // Now add the high resolution component (degrees * 10^-9 )
// Print the lat and lon
Serial.print("Lat (deg): ");
Serial.print(d_lat, 9);
Serial.print(", Lon (deg): ");
Serial.print(d_lon, 9);
// Now define float storage for the heights and accuracy
float f_ellipsoid;
float f_msl;
float f_accuracy;
// Calculate the height above ellipsoid in mm * 10^-1
f_ellipsoid = (ellipsoid * 10) + ellipsoidHp;
// Now convert to m
f_ellipsoid = f_ellipsoid / 10000.0; // Convert from mm * 10^-1 to m
// Calculate the height above mean sea level in mm * 10^-1
f_msl = (msl * 10) + mslHp;
// Now convert to m
f_msl = f_msl / 10000.0; // Convert from mm * 10^-1 to m
// Convert the horizontal accuracy (mm * 10^-1) to a float
f_accuracy = accuracy;
// Now convert to m
f_accuracy = f_accuracy / 10000.0; // Convert from mm * 10^-1 to m
// Finally, do the printing
Serial.print(", Ellipsoid (m): ");
Serial.print(f_ellipsoid, 4); // Print the ellipsoid with 4 decimal places
Serial.print(", Mean Sea Level (m): ");
Serial.print(f_msl, 4); // Print the mean sea level with 4 decimal places
Serial.print(", Accuracy (m): ");
Serial.println(f_accuracy, 4); // Print the accuracy with 4 decimal places
}
}