''' 1、读取影像 2、bin 3、去除暗电流 + 转反射率 4、保存光谱 ''' import numpy as np import matplotlib.pyplot as plt import sys from osgeo import gdal #读写影像数据 from PIL import Image import cv2 class GRID: #读图像文件 @classmethod def read_img(cls, filename): try: dataset = gdal.Open(filename) # 打开文件 im_width = dataset.RasterXSize # 栅格矩阵的列数 im_height = dataset.RasterYSize # 栅格矩阵的行数 num_bands = dataset.RasterCount # 栅格矩阵的波段数 im_geotrans = dataset.GetGeoTransform() # 仿射矩阵 im_proj = dataset.GetProjection() # 地图投影信息 im_data = dataset.ReadAsArray(0, 0, im_width, im_height) # 将数据写成数组,对应栅格矩阵 del dataset return im_proj, im_geotrans, im_data except: sys.exit() #写文件,以写成tif为例 @classmethod def write_img(cls, dst_filename, data): format = "ENVI" driver = gdal.GetDriverByName(format) RasterXSize = data.shape[2] # 遥感影像的sample(列数) RasterYSize = data.shape[1] # 遥感影像的line(行数) band = data.shape[0] dst_ds = driver.Create(dst_filename, RasterXSize, RasterYSize, band, gdal.GDT_Float32) # driver.Create()函数中RasterXSize代表影像的sample(列数),RasterYSize代表影像的line(行数) for i in range(band): dst_ds.GetRasterBand(i + 1).WriteArray(data[i, :, :]) # gdal的band从1开始,所以dst_ds.GetRasterBand(i+1) dst_ds = None # bin @classmethod def bin(cls, img, nBin): if nBin == 1: return img image_bin = np.empty((int(img.shape[0] / nBin), img.shape[1], img.shape[2])) k = np.arange(img.shape[0])[0::nBin] for i in range(image_bin.shape[0]): for j in range(nBin): image_bin[i] += img[k[i] + j] return image_bin # 计算波长 @classmethod def calculate_wavelength(cls, x): wavelength = x * 1.999564 - 279.893 return wavelength wavelength = np.empty(639 - 339) for i in range(339, 639): wavelength[i - 339] = GRID.calculate_wavelength(i) # 等效于ENVI拉伸:No stretch def stretch(img, minimum=0, maximum=255): if len(img.shape) == 2: img_new = (img - minimum) / (maximum - minimum) img_new[img_new < 0] = 0 img_new[img_new > 1] = 1 return img_new else: img_new = np.empty(img.shape) for i in range(img.shape[2]): img_new[:, :, i] = (img[:, :, i] - minimum) / (maximum - minimum) img_new[:, :, i][img_new[:, :, i] < 0] = 0 img_new[:, :, i][img_new[:, :, i] > 1] = 1 return img_new # 当lowPercentile=0, highPercentile=100时,等效于Min-Max Stretching # lowPercentile=2, highPercentile=98时,等效于ENVI拉伸:Linear 2% # https://blog.csdn.net/LEILEI18A/article/details/80180483 def percentile_stretching(img, lowPercentile=0, highPercentile=100, minout=0, maxout=255): if len(img.shape) == 2: low = np.percentile(img, lowPercentile) up = np.percentile(img, highPercentile) img_new = ((img - low) / (up - low)) * (maxout - minout) + minout img_new[img_new < minout] = minout img_new[img_new > maxout] = maxout img_out = np.uint8(img_new) return img_out else: # 对于彩色照片,需要先单独对每个波段拉伸 img_new = np.empty(img.shape) for i in range(img.shape[2]): low = np.percentile(img[:, :, i], lowPercentile) up = np.percentile(img[:, :, i], highPercentile) img_new[:, :, i] = minout + ((img[:, :, i] - low) / (up - low)) * (maxout - minout) img_new[:, :, i][img_new[:, :, i] < minout] = minout img_new[:, :, i][img_new[:, :, i] > maxout] = maxout img_out = np.uint8(img_new) return img_out # 画出图像直方图 # https://blog.csdn.net/fly_wt/article/details/83904207 def image_hist(image): # 画三通道图像的直方图 color = ("blue", "green", "red") # 画笔颜色的值可以为大写或小写或只写首字母或大小写混合 for i, color in enumerate(color): hist = cv2.calcHist([image], [i], None, [256], [0, 256]) plt.plot(hist, color=color) plt.xlim([0, 256]) plt.show() print("读取影像") #image = r'D:\py_program\corning410\2%拉伸显示问题 + 漏帧\x270\dn值\corning410_test10' image = r'D:\corning410_test10' im_proj, im_geotrans, im_data = GRID.read_img(image) print("挑取波段用于真彩色显示") rgb_raw = np.dstack((im_data[121], im_data[76], im_data[36])) rgb = rgb_raw.astype(np.uint8) x1 = stretch(rgb_raw) #等效于ENVI拉伸:No stretch x2 = percentile_stretching(rgb_raw) # Min-Max Stretching x3 = percentile_stretching(rgb_raw, 2, 98) # 2% Stretching print("画出影像") plt.imshow(x3) plt.show()