/** ******************************************************************** * @file util_md5.c * @brief * * @copyright (c) 2021 DJI. All rights reserved. * * All information contained herein is, and remains, the property of DJI. * The intellectual and technical concepts contained herein are proprietary * to DJI and may be covered by U.S. and foreign patents, patents in process, * and protected by trade secret or copyright law. Dissemination of this * information, including but not limited to data and other proprietary * material(s) incorporated within the information, in any form, is strictly * prohibited without the express written consent of DJI. * * If you receive this source code without DJI’s authorization, you may not * further disseminate the information, and you must immediately remove the * source code and notify DJI of its removal. DJI reserves the right to pursue * legal actions against you for any loss(es) or damage(s) caused by your * failure to do so. * * crypto-algorithms * ================= * * About * --- * These are basic implementations of standard cryptography algorithms, written by Brad Conte (brad@bradconte.com) from * scratch and without any cross-licensing. They exist to provide publically accessible, restriction-free implementations * of popular cryptographic algorithms, like AES and SHA-1. These are primarily intended for educational and pragmatic * purposes (such as comparing a specification to actual implementation code, or for building an internal application * that computes test vectors for a product). The algorithms have been tested against standard test vectors. * This code is released into the public domain free of any restrictions. The author requests acknowledgement if the code * is used, but does not require it. This code is provided free of any liability and without any quality claims by the * author. * Note that these are *not* cryptographically secure implementations. They have no resistence to side-channel attacks * and should not be used in contexts that need cryptographically secure implementations. * These algorithms are not optimized for speed or space. They are primarily designed to be easy to read, although some * basic optimization techniques have been employed. * Building * --- * The source code for each algorithm will come in a pair of a source code file and a header file. There should be no * inter-header file dependencies, no additional libraries, no platform-specific header files, or any other complicating * matters. Compiling them should be as easy as adding the relevent source code to the project. * * @statement DJI has modified some symbols' name. * ********************************************************************* */ /* Includes ------------------------------------------------------------------*/ #include "util_md5.h" /* Private constants ---------------------------------------------------------*/ #define ROTLEFT(a, b) ((a << b) | (a >> (32-b))) #define F(x, y, z) ((x & y) | (~x & z)) #define G(x, y, z) ((x & z) | (y & ~z)) #define H(x, y, z) (x ^ y ^ z) #define I(x, y, z) (y ^ (x | ~z)) #define FF(a, b, c, d, m, s, t) { a += F(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define GG(a, b, c, d, m, s, t) { a += G(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define HH(a, b, c, d, m, s, t) { a += H(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define II(a, b, c, d, m, s, t) { a += I(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } /* Private types -------------------------------------------------------------*/ /* Private functions declaration ---------------------------------------------*/ /* Exported functions definition ---------------------------------------------*/ void UtilMd5_Transform(MD5_CTX *ctx, const BYTE *data) { WORD a, b, c, d, m[16], i, j; // MD5 specifies big endian byte order, but this implementation assumes a little // endian byte order CPU. Reverse all the bytes upon input, and re-reverse them // on output (in md5_final()). for (i = 0, j = 0; i < 16; ++i, j += 4) { m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24); } a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; FF(a, b, c, d, m[0], 7, 0xd76aa478); FF(d, a, b, c, m[1], 12, 0xe8c7b756); FF(c, d, a, b, m[2], 17, 0x242070db); FF(b, c, d, a, m[3], 22, 0xc1bdceee); FF(a, b, c, d, m[4], 7, 0xf57c0faf); FF(d, a, b, c, m[5], 12, 0x4787c62a); FF(c, d, a, b, m[6], 17, 0xa8304613); FF(b, c, d, a, m[7], 22, 0xfd469501); FF(a, b, c, d, m[8], 7, 0x698098d8); FF(d, a, b, c, m[9], 12, 0x8b44f7af); FF(c, d, a, b, m[10], 17, 0xffff5bb1); FF(b, c, d, a, m[11], 22, 0x895cd7be); FF(a, b, c, d, m[12], 7, 0x6b901122); FF(d, a, b, c, m[13], 12, 0xfd987193); FF(c, d, a, b, m[14], 17, 0xa679438e); FF(b, c, d, a, m[15], 22, 0x49b40821); GG(a, b, c, d, m[1], 5, 0xf61e2562); GG(d, a, b, c, m[6], 9, 0xc040b340); GG(c, d, a, b, m[11], 14, 0x265e5a51); GG(b, c, d, a, m[0], 20, 0xe9b6c7aa); GG(a, b, c, d, m[5], 5, 0xd62f105d); GG(d, a, b, c, m[10], 9, 0x02441453); GG(c, d, a, b, m[15], 14, 0xd8a1e681); GG(b, c, d, a, m[4], 20, 0xe7d3fbc8); GG(a, b, c, d, m[9], 5, 0x21e1cde6); GG(d, a, b, c, m[14], 9, 0xc33707d6); GG(c, d, a, b, m[3], 14, 0xf4d50d87); GG(b, c, d, a, m[8], 20, 0x455a14ed); GG(a, b, c, d, m[13], 5, 0xa9e3e905); GG(d, a, b, c, m[2], 9, 0xfcefa3f8); GG(c, d, a, b, m[7], 14, 0x676f02d9); GG(b, c, d, a, m[12], 20, 0x8d2a4c8a); HH(a, b, c, d, m[5], 4, 0xfffa3942); HH(d, a, b, c, m[8], 11, 0x8771f681); HH(c, d, a, b, m[11], 16, 0x6d9d6122); HH(b, c, d, a, m[14], 23, 0xfde5380c); HH(a, b, c, d, m[1], 4, 0xa4beea44); HH(d, a, b, c, m[4], 11, 0x4bdecfa9); HH(c, d, a, b, m[7], 16, 0xf6bb4b60); HH(b, c, d, a, m[10], 23, 0xbebfbc70); HH(a, b, c, d, m[13], 4, 0x289b7ec6); HH(d, a, b, c, m[0], 11, 0xeaa127fa); HH(c, d, a, b, m[3], 16, 0xd4ef3085); HH(b, c, d, a, m[6], 23, 0x04881d05); HH(a, b, c, d, m[9], 4, 0xd9d4d039); HH(d, a, b, c, m[12], 11, 0xe6db99e5); HH(c, d, a, b, m[15], 16, 0x1fa27cf8); HH(b, c, d, a, m[2], 23, 0xc4ac5665); II(a, b, c, d, m[0], 6, 0xf4292244); II(d, a, b, c, m[7], 10, 0x432aff97); II(c, d, a, b, m[14], 15, 0xab9423a7); II(b, c, d, a, m[5], 21, 0xfc93a039); II(a, b, c, d, m[12], 6, 0x655b59c3); II(d, a, b, c, m[3], 10, 0x8f0ccc92); II(c, d, a, b, m[10], 15, 0xffeff47d); II(b, c, d, a, m[1], 21, 0x85845dd1); II(a, b, c, d, m[8], 6, 0x6fa87e4f); II(d, a, b, c, m[15], 10, 0xfe2ce6e0); II(c, d, a, b, m[6], 15, 0xa3014314); II(b, c, d, a, m[13], 21, 0x4e0811a1); II(a, b, c, d, m[4], 6, 0xf7537e82); II(d, a, b, c, m[11], 10, 0xbd3af235); II(c, d, a, b, m[2], 15, 0x2ad7d2bb); II(b, c, d, a, m[9], 21, 0xeb86d391); ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; } void UtilMd5_Init(MD5_CTX *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; } void UtilMd5_Update(MD5_CTX *ctx, const BYTE *data, size_t len) { size_t i; for (i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { UtilMd5_Transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void UtilMd5_Final(MD5_CTX *ctx, BYTE *hash) { size_t i; i = ctx->datalen; // Pad whatever data is left in the buffer. if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) { ctx->data[i++] = 0x00; } } else if (ctx->datalen >= 56) { ctx->data[i++] = 0x80; while (i < 64) { ctx->data[i++] = 0x00; } UtilMd5_Transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[56] = ctx->bitlen; ctx->data[57] = ctx->bitlen >> 8; ctx->data[58] = ctx->bitlen >> 16; ctx->data[59] = ctx->bitlen >> 24; ctx->data[60] = ctx->bitlen >> 32; ctx->data[61] = ctx->bitlen >> 40; ctx->data[62] = ctx->bitlen >> 48; ctx->data[63] = ctx->bitlen >> 56; UtilMd5_Transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and MD uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff; } } /* Private functions definition-----------------------------------------------*/ /****************** (C) COPYRIGHT DJI Innovations *****END OF FILE****/