239 lines
9.1 KiB
C
239 lines
9.1 KiB
C
/**
|
||
********************************************************************
|
||
* @file util_md5.c
|
||
* @brief
|
||
*
|
||
* @copyright (c) 2021 DJI. All rights reserved.
|
||
*
|
||
* All information contained herein is, and remains, the property of DJI.
|
||
* The intellectual and technical concepts contained herein are proprietary
|
||
* to DJI and may be covered by U.S. and foreign patents, patents in process,
|
||
* and protected by trade secret or copyright law. Dissemination of this
|
||
* information, including but not limited to data and other proprietary
|
||
* material(s) incorporated within the information, in any form, is strictly
|
||
* prohibited without the express written consent of DJI.
|
||
*
|
||
* If you receive this source code without DJI’s authorization, you may not
|
||
* further disseminate the information, and you must immediately remove the
|
||
* source code and notify DJI of its removal. DJI reserves the right to pursue
|
||
* legal actions against you for any loss(es) or damage(s) caused by your
|
||
* failure to do so.
|
||
*
|
||
* crypto-algorithms
|
||
* =================
|
||
*
|
||
* About
|
||
* ---
|
||
* These are basic implementations of standard cryptography algorithms, written by Brad Conte (brad@bradconte.com) from
|
||
* scratch and without any cross-licensing. They exist to provide publically accessible, restriction-free implementations
|
||
* of popular cryptographic algorithms, like AES and SHA-1. These are primarily intended for educational and pragmatic
|
||
* purposes (such as comparing a specification to actual implementation code, or for building an internal application
|
||
* that computes test vectors for a product). The algorithms have been tested against standard test vectors.
|
||
* This code is released into the public domain free of any restrictions. The author requests acknowledgement if the code
|
||
* is used, but does not require it. This code is provided free of any liability and without any quality claims by the
|
||
* author.
|
||
* Note that these are *not* cryptographically secure implementations. They have no resistence to side-channel attacks
|
||
* and should not be used in contexts that need cryptographically secure implementations.
|
||
* These algorithms are not optimized for speed or space. They are primarily designed to be easy to read, although some
|
||
* basic optimization techniques have been employed.
|
||
* Building
|
||
* ---
|
||
* The source code for each algorithm will come in a pair of a source code file and a header file. There should be no
|
||
* inter-header file dependencies, no additional libraries, no platform-specific header files, or any other complicating
|
||
* matters. Compiling them should be as easy as adding the relevent source code to the project.
|
||
*
|
||
* @statement DJI has modified some symbols' name.
|
||
*
|
||
*********************************************************************
|
||
*/
|
||
|
||
/* Includes ------------------------------------------------------------------*/
|
||
#include "util_md5.h"
|
||
|
||
/* Private constants ---------------------------------------------------------*/
|
||
#define ROTLEFT(a, b) ((a << b) | (a >> (32-b)))
|
||
|
||
#define F(x, y, z) ((x & y) | (~x & z))
|
||
#define G(x, y, z) ((x & z) | (y & ~z))
|
||
#define H(x, y, z) (x ^ y ^ z)
|
||
#define I(x, y, z) (y ^ (x | ~z))
|
||
|
||
#define FF(a, b, c, d, m, s, t) { a += F(b,c,d) + m + t; \
|
||
a = b + ROTLEFT(a,s); }
|
||
#define GG(a, b, c, d, m, s, t) { a += G(b,c,d) + m + t; \
|
||
a = b + ROTLEFT(a,s); }
|
||
#define HH(a, b, c, d, m, s, t) { a += H(b,c,d) + m + t; \
|
||
a = b + ROTLEFT(a,s); }
|
||
#define II(a, b, c, d, m, s, t) { a += I(b,c,d) + m + t; \
|
||
a = b + ROTLEFT(a,s); }
|
||
|
||
/* Private types -------------------------------------------------------------*/
|
||
|
||
|
||
/* Private functions declaration ---------------------------------------------*/
|
||
|
||
|
||
/* Exported functions definition ---------------------------------------------*/
|
||
void UtilMd5_Transform(MD5_CTX *ctx, const BYTE *data)
|
||
{
|
||
WORD a, b, c, d, m[16], i, j;
|
||
|
||
// MD5 specifies big endian byte order, but this implementation assumes a little
|
||
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
|
||
// on output (in md5_final()).
|
||
for (i = 0, j = 0; i < 16; ++i, j += 4) {
|
||
m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
|
||
}
|
||
|
||
a = ctx->state[0];
|
||
b = ctx->state[1];
|
||
c = ctx->state[2];
|
||
d = ctx->state[3];
|
||
|
||
FF(a, b, c, d, m[0], 7, 0xd76aa478);
|
||
FF(d, a, b, c, m[1], 12, 0xe8c7b756);
|
||
FF(c, d, a, b, m[2], 17, 0x242070db);
|
||
FF(b, c, d, a, m[3], 22, 0xc1bdceee);
|
||
FF(a, b, c, d, m[4], 7, 0xf57c0faf);
|
||
FF(d, a, b, c, m[5], 12, 0x4787c62a);
|
||
FF(c, d, a, b, m[6], 17, 0xa8304613);
|
||
FF(b, c, d, a, m[7], 22, 0xfd469501);
|
||
FF(a, b, c, d, m[8], 7, 0x698098d8);
|
||
FF(d, a, b, c, m[9], 12, 0x8b44f7af);
|
||
FF(c, d, a, b, m[10], 17, 0xffff5bb1);
|
||
FF(b, c, d, a, m[11], 22, 0x895cd7be);
|
||
FF(a, b, c, d, m[12], 7, 0x6b901122);
|
||
FF(d, a, b, c, m[13], 12, 0xfd987193);
|
||
FF(c, d, a, b, m[14], 17, 0xa679438e);
|
||
FF(b, c, d, a, m[15], 22, 0x49b40821);
|
||
|
||
GG(a, b, c, d, m[1], 5, 0xf61e2562);
|
||
GG(d, a, b, c, m[6], 9, 0xc040b340);
|
||
GG(c, d, a, b, m[11], 14, 0x265e5a51);
|
||
GG(b, c, d, a, m[0], 20, 0xe9b6c7aa);
|
||
GG(a, b, c, d, m[5], 5, 0xd62f105d);
|
||
GG(d, a, b, c, m[10], 9, 0x02441453);
|
||
GG(c, d, a, b, m[15], 14, 0xd8a1e681);
|
||
GG(b, c, d, a, m[4], 20, 0xe7d3fbc8);
|
||
GG(a, b, c, d, m[9], 5, 0x21e1cde6);
|
||
GG(d, a, b, c, m[14], 9, 0xc33707d6);
|
||
GG(c, d, a, b, m[3], 14, 0xf4d50d87);
|
||
GG(b, c, d, a, m[8], 20, 0x455a14ed);
|
||
GG(a, b, c, d, m[13], 5, 0xa9e3e905);
|
||
GG(d, a, b, c, m[2], 9, 0xfcefa3f8);
|
||
GG(c, d, a, b, m[7], 14, 0x676f02d9);
|
||
GG(b, c, d, a, m[12], 20, 0x8d2a4c8a);
|
||
|
||
HH(a, b, c, d, m[5], 4, 0xfffa3942);
|
||
HH(d, a, b, c, m[8], 11, 0x8771f681);
|
||
HH(c, d, a, b, m[11], 16, 0x6d9d6122);
|
||
HH(b, c, d, a, m[14], 23, 0xfde5380c);
|
||
HH(a, b, c, d, m[1], 4, 0xa4beea44);
|
||
HH(d, a, b, c, m[4], 11, 0x4bdecfa9);
|
||
HH(c, d, a, b, m[7], 16, 0xf6bb4b60);
|
||
HH(b, c, d, a, m[10], 23, 0xbebfbc70);
|
||
HH(a, b, c, d, m[13], 4, 0x289b7ec6);
|
||
HH(d, a, b, c, m[0], 11, 0xeaa127fa);
|
||
HH(c, d, a, b, m[3], 16, 0xd4ef3085);
|
||
HH(b, c, d, a, m[6], 23, 0x04881d05);
|
||
HH(a, b, c, d, m[9], 4, 0xd9d4d039);
|
||
HH(d, a, b, c, m[12], 11, 0xe6db99e5);
|
||
HH(c, d, a, b, m[15], 16, 0x1fa27cf8);
|
||
HH(b, c, d, a, m[2], 23, 0xc4ac5665);
|
||
|
||
II(a, b, c, d, m[0], 6, 0xf4292244);
|
||
II(d, a, b, c, m[7], 10, 0x432aff97);
|
||
II(c, d, a, b, m[14], 15, 0xab9423a7);
|
||
II(b, c, d, a, m[5], 21, 0xfc93a039);
|
||
II(a, b, c, d, m[12], 6, 0x655b59c3);
|
||
II(d, a, b, c, m[3], 10, 0x8f0ccc92);
|
||
II(c, d, a, b, m[10], 15, 0xffeff47d);
|
||
II(b, c, d, a, m[1], 21, 0x85845dd1);
|
||
II(a, b, c, d, m[8], 6, 0x6fa87e4f);
|
||
II(d, a, b, c, m[15], 10, 0xfe2ce6e0);
|
||
II(c, d, a, b, m[6], 15, 0xa3014314);
|
||
II(b, c, d, a, m[13], 21, 0x4e0811a1);
|
||
II(a, b, c, d, m[4], 6, 0xf7537e82);
|
||
II(d, a, b, c, m[11], 10, 0xbd3af235);
|
||
II(c, d, a, b, m[2], 15, 0x2ad7d2bb);
|
||
II(b, c, d, a, m[9], 21, 0xeb86d391);
|
||
|
||
ctx->state[0] += a;
|
||
ctx->state[1] += b;
|
||
ctx->state[2] += c;
|
||
ctx->state[3] += d;
|
||
}
|
||
|
||
void UtilMd5_Init(MD5_CTX *ctx)
|
||
{
|
||
ctx->datalen = 0;
|
||
ctx->bitlen = 0;
|
||
ctx->state[0] = 0x67452301;
|
||
ctx->state[1] = 0xEFCDAB89;
|
||
ctx->state[2] = 0x98BADCFE;
|
||
ctx->state[3] = 0x10325476;
|
||
}
|
||
|
||
void UtilMd5_Update(MD5_CTX *ctx, const BYTE *data, size_t len)
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; i < len; ++i) {
|
||
ctx->data[ctx->datalen] = data[i];
|
||
ctx->datalen++;
|
||
if (ctx->datalen == 64) {
|
||
UtilMd5_Transform(ctx, ctx->data);
|
||
ctx->bitlen += 512;
|
||
ctx->datalen = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
void UtilMd5_Final(MD5_CTX *ctx, BYTE *hash)
|
||
{
|
||
size_t i;
|
||
|
||
i = ctx->datalen;
|
||
|
||
// Pad whatever data is left in the buffer.
|
||
if (ctx->datalen < 56) {
|
||
ctx->data[i++] = 0x80;
|
||
while (i < 56) {
|
||
ctx->data[i++] = 0x00;
|
||
}
|
||
} else if (ctx->datalen >= 56) {
|
||
ctx->data[i++] = 0x80;
|
||
while (i < 64) {
|
||
ctx->data[i++] = 0x00;
|
||
}
|
||
UtilMd5_Transform(ctx, ctx->data);
|
||
memset(ctx->data, 0, 56);
|
||
}
|
||
|
||
// Append to the padding the total message's length in bits and transform.
|
||
ctx->bitlen += ctx->datalen * 8;
|
||
ctx->data[56] = ctx->bitlen;
|
||
ctx->data[57] = ctx->bitlen >> 8;
|
||
ctx->data[58] = ctx->bitlen >> 16;
|
||
ctx->data[59] = ctx->bitlen >> 24;
|
||
ctx->data[60] = ctx->bitlen >> 32;
|
||
ctx->data[61] = ctx->bitlen >> 40;
|
||
ctx->data[62] = ctx->bitlen >> 48;
|
||
ctx->data[63] = ctx->bitlen >> 56;
|
||
UtilMd5_Transform(ctx, ctx->data);
|
||
|
||
// Since this implementation uses little endian byte ordering and MD uses big endian,
|
||
// reverse all the bytes when copying the final state to the output hash.
|
||
for (i = 0; i < 4; ++i) {
|
||
hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
|
||
hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
|
||
hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
|
||
hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
|
||
}
|
||
}
|
||
|
||
/* Private functions definition-----------------------------------------------*/
|
||
|
||
|
||
/****************** (C) COPYRIGHT DJI Innovations *****END OF FILE****/
|