first commit

This commit is contained in:
DESKTOP-4HD0KC3\ZhangZhuo
2024-10-30 15:04:53 +08:00
commit e7d6f4c57b
723 changed files with 7515585 additions and 0 deletions

View File

@ -0,0 +1,238 @@
/**
********************************************************************
* @file util_md5.c
* @brief
*
* @copyright (c) 2021 DJI. All rights reserved.
*
* All information contained herein is, and remains, the property of DJI.
* The intellectual and technical concepts contained herein are proprietary
* to DJI and may be covered by U.S. and foreign patents, patents in process,
* and protected by trade secret or copyright law. Dissemination of this
* information, including but not limited to data and other proprietary
* material(s) incorporated within the information, in any form, is strictly
* prohibited without the express written consent of DJI.
*
* If you receive this source code without DJIs authorization, you may not
* further disseminate the information, and you must immediately remove the
* source code and notify DJI of its removal. DJI reserves the right to pursue
* legal actions against you for any loss(es) or damage(s) caused by your
* failure to do so.
*
* crypto-algorithms
* =================
*
* About
* ---
* These are basic implementations of standard cryptography algorithms, written by Brad Conte (brad@bradconte.com) from
* scratch and without any cross-licensing. They exist to provide publically accessible, restriction-free implementations
* of popular cryptographic algorithms, like AES and SHA-1. These are primarily intended for educational and pragmatic
* purposes (such as comparing a specification to actual implementation code, or for building an internal application
* that computes test vectors for a product). The algorithms have been tested against standard test vectors.
* This code is released into the public domain free of any restrictions. The author requests acknowledgement if the code
* is used, but does not require it. This code is provided free of any liability and without any quality claims by the
* author.
* Note that these are *not* cryptographically secure implementations. They have no resistence to side-channel attacks
* and should not be used in contexts that need cryptographically secure implementations.
* These algorithms are not optimized for speed or space. They are primarily designed to be easy to read, although some
* basic optimization techniques have been employed.
* Building
* ---
* The source code for each algorithm will come in a pair of a source code file and a header file. There should be no
* inter-header file dependencies, no additional libraries, no platform-specific header files, or any other complicating
* matters. Compiling them should be as easy as adding the relevent source code to the project.
*
* @statement DJI has modified some symbols' name.
*
*********************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "util_md5.h"
/* Private constants ---------------------------------------------------------*/
#define ROTLEFT(a, b) ((a << b) | (a >> (32-b)))
#define F(x, y, z) ((x & y) | (~x & z))
#define G(x, y, z) ((x & z) | (y & ~z))
#define H(x, y, z) (x ^ y ^ z)
#define I(x, y, z) (y ^ (x | ~z))
#define FF(a, b, c, d, m, s, t) { a += F(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define GG(a, b, c, d, m, s, t) { a += G(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define HH(a, b, c, d, m, s, t) { a += H(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define II(a, b, c, d, m, s, t) { a += I(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
/* Private types -------------------------------------------------------------*/
/* Private functions declaration ---------------------------------------------*/
/* Exported functions definition ---------------------------------------------*/
void UtilMd5_Transform(MD5_CTX *ctx, const BYTE *data)
{
WORD a, b, c, d, m[16], i, j;
// MD5 specifies big endian byte order, but this implementation assumes a little
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
// on output (in md5_final()).
for (i = 0, j = 0; i < 16; ++i, j += 4) {
m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
FF(a, b, c, d, m[0], 7, 0xd76aa478);
FF(d, a, b, c, m[1], 12, 0xe8c7b756);
FF(c, d, a, b, m[2], 17, 0x242070db);
FF(b, c, d, a, m[3], 22, 0xc1bdceee);
FF(a, b, c, d, m[4], 7, 0xf57c0faf);
FF(d, a, b, c, m[5], 12, 0x4787c62a);
FF(c, d, a, b, m[6], 17, 0xa8304613);
FF(b, c, d, a, m[7], 22, 0xfd469501);
FF(a, b, c, d, m[8], 7, 0x698098d8);
FF(d, a, b, c, m[9], 12, 0x8b44f7af);
FF(c, d, a, b, m[10], 17, 0xffff5bb1);
FF(b, c, d, a, m[11], 22, 0x895cd7be);
FF(a, b, c, d, m[12], 7, 0x6b901122);
FF(d, a, b, c, m[13], 12, 0xfd987193);
FF(c, d, a, b, m[14], 17, 0xa679438e);
FF(b, c, d, a, m[15], 22, 0x49b40821);
GG(a, b, c, d, m[1], 5, 0xf61e2562);
GG(d, a, b, c, m[6], 9, 0xc040b340);
GG(c, d, a, b, m[11], 14, 0x265e5a51);
GG(b, c, d, a, m[0], 20, 0xe9b6c7aa);
GG(a, b, c, d, m[5], 5, 0xd62f105d);
GG(d, a, b, c, m[10], 9, 0x02441453);
GG(c, d, a, b, m[15], 14, 0xd8a1e681);
GG(b, c, d, a, m[4], 20, 0xe7d3fbc8);
GG(a, b, c, d, m[9], 5, 0x21e1cde6);
GG(d, a, b, c, m[14], 9, 0xc33707d6);
GG(c, d, a, b, m[3], 14, 0xf4d50d87);
GG(b, c, d, a, m[8], 20, 0x455a14ed);
GG(a, b, c, d, m[13], 5, 0xa9e3e905);
GG(d, a, b, c, m[2], 9, 0xfcefa3f8);
GG(c, d, a, b, m[7], 14, 0x676f02d9);
GG(b, c, d, a, m[12], 20, 0x8d2a4c8a);
HH(a, b, c, d, m[5], 4, 0xfffa3942);
HH(d, a, b, c, m[8], 11, 0x8771f681);
HH(c, d, a, b, m[11], 16, 0x6d9d6122);
HH(b, c, d, a, m[14], 23, 0xfde5380c);
HH(a, b, c, d, m[1], 4, 0xa4beea44);
HH(d, a, b, c, m[4], 11, 0x4bdecfa9);
HH(c, d, a, b, m[7], 16, 0xf6bb4b60);
HH(b, c, d, a, m[10], 23, 0xbebfbc70);
HH(a, b, c, d, m[13], 4, 0x289b7ec6);
HH(d, a, b, c, m[0], 11, 0xeaa127fa);
HH(c, d, a, b, m[3], 16, 0xd4ef3085);
HH(b, c, d, a, m[6], 23, 0x04881d05);
HH(a, b, c, d, m[9], 4, 0xd9d4d039);
HH(d, a, b, c, m[12], 11, 0xe6db99e5);
HH(c, d, a, b, m[15], 16, 0x1fa27cf8);
HH(b, c, d, a, m[2], 23, 0xc4ac5665);
II(a, b, c, d, m[0], 6, 0xf4292244);
II(d, a, b, c, m[7], 10, 0x432aff97);
II(c, d, a, b, m[14], 15, 0xab9423a7);
II(b, c, d, a, m[5], 21, 0xfc93a039);
II(a, b, c, d, m[12], 6, 0x655b59c3);
II(d, a, b, c, m[3], 10, 0x8f0ccc92);
II(c, d, a, b, m[10], 15, 0xffeff47d);
II(b, c, d, a, m[1], 21, 0x85845dd1);
II(a, b, c, d, m[8], 6, 0x6fa87e4f);
II(d, a, b, c, m[15], 10, 0xfe2ce6e0);
II(c, d, a, b, m[6], 15, 0xa3014314);
II(b, c, d, a, m[13], 21, 0x4e0811a1);
II(a, b, c, d, m[4], 6, 0xf7537e82);
II(d, a, b, c, m[11], 10, 0xbd3af235);
II(c, d, a, b, m[2], 15, 0x2ad7d2bb);
II(b, c, d, a, m[9], 21, 0xeb86d391);
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
}
void UtilMd5_Init(MD5_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void UtilMd5_Update(MD5_CTX *ctx, const BYTE *data, size_t len)
{
size_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
UtilMd5_Transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void UtilMd5_Final(MD5_CTX *ctx, BYTE *hash)
{
size_t i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56) {
ctx->data[i++] = 0x00;
}
} else if (ctx->datalen >= 56) {
ctx->data[i++] = 0x80;
while (i < 64) {
ctx->data[i++] = 0x00;
}
UtilMd5_Transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[56] = ctx->bitlen;
ctx->data[57] = ctx->bitlen >> 8;
ctx->data[58] = ctx->bitlen >> 16;
ctx->data[59] = ctx->bitlen >> 24;
ctx->data[60] = ctx->bitlen >> 32;
ctx->data[61] = ctx->bitlen >> 40;
ctx->data[62] = ctx->bitlen >> 48;
ctx->data[63] = ctx->bitlen >> 56;
UtilMd5_Transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
}
}
/* Private functions definition-----------------------------------------------*/
/****************** (C) COPYRIGHT DJI Innovations *****END OF FILE****/