173 lines
4.9 KiB
Python
173 lines
4.9 KiB
Python
import datetime, math, os, sys, logging
|
||
import cv2
|
||
import numpy as np
|
||
|
||
|
||
# r / b
|
||
def ratio_method1(image_path):
|
||
# Load an image
|
||
img = cv2.imread(image_path)
|
||
# img = cv2.imread(image_path, 0) # Load an image in grayscale
|
||
|
||
b, g, r = cv2.split(img)
|
||
cloud = r / b
|
||
|
||
ret, cloud_BINARY = cv2.threshold(cloud, 0.6, 255, cv2.THRESH_BINARY) # 文献中推荐阈值为0.6
|
||
cloudage = cloud_BINARY.sum() / (cloud_BINARY.size * 255)
|
||
|
||
print("r/b算法,云量为%f\n" % cloudage)
|
||
|
||
tmp = image_path.split('.')
|
||
out = tmp[0] + "_r_b." + tmp[1]
|
||
cv2.imwrite(out, cloud_BINARY)
|
||
|
||
# cv2.imshow('image', cloud_BINARY)
|
||
# cv2.waitKey(0)
|
||
# cv2.destroyAllWindows()
|
||
|
||
return cloud_BINARY
|
||
|
||
|
||
# (b-r) / (b+r)
|
||
def ratio_method2(image_path):
|
||
img = cv2.imread(image_path)
|
||
|
||
b, g, r = cv2.split(img)
|
||
cloud = (b-r) / (b+r)
|
||
|
||
ret, cloud_BINARY = cv2.threshold(cloud, 0.2, 255, cv2.THRESH_BINARY_INV)
|
||
cloudage = cloud_BINARY.sum() / (cloud_BINARY.size * 255)
|
||
|
||
print("(b-r) / (b+r)算法,云量为%f\n" % cloudage)
|
||
|
||
tmp = image_path.split('.')
|
||
out = tmp[0] + "_(b-r)_(b+r)." + tmp[1]
|
||
cv2.imwrite(out, cloud_BINARY)
|
||
|
||
# cv2.imshow('image', cloud_BINARY)
|
||
# cv2.waitKey(0)
|
||
# cv2.destroyAllWindows()
|
||
|
||
return cloud_BINARY
|
||
|
||
|
||
# r / b - (b-r) / (b+r)
|
||
def ratio_method1_subtract_ratio_method2(image_path):
|
||
result1 = ratio_method1(image_path)
|
||
result2 = ratio_method2(image_path)
|
||
|
||
light_cloud_BINARY = np.zeros_like(result1)
|
||
|
||
for x in range(result1.shape[0]):
|
||
for y in range(result1.shape[1]):
|
||
if (result1[x, y] != 0 and result2[x, y] == 0):
|
||
light_cloud_BINARY[x, y] = 255
|
||
|
||
tmp = image_path.split('.')
|
||
out = tmp[0] + "_subtract." + tmp[1]
|
||
cv2.imwrite(out, light_cloud_BINARY)
|
||
|
||
# cv2.imshow('image', light_cloud_BINARY)
|
||
# cv2.waitKey(0)
|
||
# cv2.destroyAllWindows()
|
||
|
||
|
||
def saturability_method(image_path):
|
||
img = cv2.imread(image_path)
|
||
b, g, r = cv2.split(img)
|
||
|
||
# 自己计算饱和度-----> 失败:计算的饱和度不对,是负值
|
||
ones = np.ones_like(b)
|
||
sum = b + g + r
|
||
min_b_g_r = np.zeros_like(b)
|
||
|
||
for x in range(b.shape[0]):
|
||
for y in range(b.shape[1]):
|
||
minValue = min(b[x, y], g[x, y], r[x, y])
|
||
min_b_g_r[x, y] = minValue
|
||
|
||
tmp = (3/sum)*min_b_g_r
|
||
s_tc = ones - tmp
|
||
|
||
# 转到HSV空间
|
||
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||
h1, s1, v1 = cv2.split(hsv)
|
||
|
||
# 转到HLS空间
|
||
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS) # 这就是ihs颜色空间:
|
||
h, l, s = cv2.split(hls)
|
||
|
||
# # 文献中的阈值
|
||
# μ_Clouds = 12.7
|
||
# σ_Clouds = 3.7
|
||
#
|
||
# μ_sky = 45.3
|
||
# σ_sky = 4.4
|
||
|
||
# # np.where用法:https://www.zhihu.com/question/62844162
|
||
# clouds_loc = np.where(s < μ_Clouds + 3 * σ_Clouds) # 厚云
|
||
# sky_loc = np.where(s > μ_sky - 3 * σ_sky) # 天空
|
||
# unknow_loc = np.where((μ_Clouds + 3 * σ_Clouds <= s) & (s <= μ_sky - 3 * σ_sky)) # 薄云
|
||
|
||
# 自己通过样本测得的阈值
|
||
μ_Clouds = 170.9
|
||
σ_Clouds = 2.7
|
||
|
||
μ_sky = 111.25
|
||
σ_sky = 3.13
|
||
|
||
# np.where用法:https://www.zhihu.com/question/62844162
|
||
clouds_loc = np.where(s > μ_Clouds - 3 * σ_Clouds) # 厚云
|
||
sky_loc = np.where(s < μ_sky + 3 * σ_sky) # 天空
|
||
unknow_loc = np.where((μ_Clouds + 3 * σ_Clouds <= s) & (s <= μ_sky - 3 * σ_sky)) # 薄云
|
||
|
||
s[sky_loc] = 1
|
||
s[clouds_loc] = 2
|
||
s[unknow_loc] = 3
|
||
|
||
tmp = image_path.split('.')
|
||
out = tmp[0] + "_saturation." + tmp[1]
|
||
cv2.imwrite(out, s)
|
||
|
||
# cv2.imshow('image', cloud_BINARY)
|
||
cv2.waitKey(0)
|
||
cv2.destroyAllWindows()
|
||
|
||
|
||
def calculate_mean_var(image_path):
|
||
img = cv2.imread(image_path)
|
||
|
||
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS) # 这就是ihs颜色空间:
|
||
h, l, s = cv2.split(hls)
|
||
|
||
mean = np.mean(s)
|
||
var = np.var(s)
|
||
|
||
print(image_path)
|
||
print("\n")
|
||
print("均值为:%f\n" % mean)
|
||
print("方差为:%f\n" % var)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
train_image_path1 = r'D:\PycharmProjects\cloudage\train\sky.jpg'
|
||
train_image_path2 = r'D:\PycharmProjects\cloudage\train\cloude.jpg'
|
||
train_image_path3 = r'D:\PycharmProjects\cloudage\train\light cloud.jpg'
|
||
train_image_path4 = r'D:\PycharmProjects\cloudage\train\s61.jpg'
|
||
train_image_path5 = r'D:\PycharmProjects\cloudage\train\s96.jpg'
|
||
# calculate_mean_var(train_image_path1)
|
||
# calculate_mean_var(train_image_path2)
|
||
# calculate_mean_var(train_image_path3)
|
||
|
||
# 证明python-opencv的饱和度值域范围未0-255
|
||
# calculate_mean_var(train_image_path4)
|
||
# calculate_mean_var(train_image_path5)
|
||
|
||
image_path = r'D:\PycharmProjects\cloudage\photo\photo12.jpg'
|
||
# image_path = r'D:\PycharmProjects\cloudage\photo\cloud1_perfect.jpg'
|
||
# ratio_method1(image_path)
|
||
ratio_method2(image_path)
|
||
# ratio_method1_subtract_ratio_method2(image_path)
|
||
|
||
# saturability_method(image_path)
|