1. hpi定标:采集影像时,实时扣暗电流,仅生成gain;

2. 300tc定标:采集时单独采集暗电流影像,生成gain+offset;
This commit is contained in:
tangchao0503
2023-03-12 20:15:10 +08:00
commit 8f143e51cc
8 changed files with 1653 additions and 0 deletions

View File

@ -0,0 +1,101 @@
'''
https://blog.csdn.net/vonuo/article/details/74783291
本方法是使用asd的方法来进行corning的辐亮度定标resonon的方法感觉和此方法差不多
'''
from osgeo import gdal
import os, math
import sys
import easygui
import numpy as np
import pandas as pd
import xlwt
# 读写影像类
class Grid(object):
#读图像文件
@classmethod
def read_img(cls, filename, xoff=0, yoff=0, im_width=None, im_height=None):
try:
dataset = gdal.Open(filename) # 打开文件
if im_width == None:
im_width = dataset.RasterXSize # 栅格矩阵的列数
if im_height == None:
im_height = dataset.RasterYSize # 栅格矩阵的行数
num_bands = dataset.RasterCount # 栅格矩阵的波段数
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
im_proj = dataset.GetProjection() # 地图投影信息
im_data = dataset.ReadAsArray(xoff, yoff, im_width, im_height) # 将数据写成数组,对应栅格矩阵
del dataset
return im_proj, im_geotrans, im_data
except:
sys.exit()
#写文件以写成tif为例
@classmethod
def write_img(cls, dst_filename, data):
format = "ENVI"
driver = gdal.GetDriverByName(format)
RasterXSize = data.shape[2] # 遥感影像的sample列数
RasterYSize = data.shape[1] # 遥感影像的line行数
band = data.shape[0]
# driver.Create()函数中RasterXSize代表影像的sample列数RasterYSize代表影像的line行数
dst_ds = driver.Create(dst_filename, RasterXSize, RasterYSize, band, gdal.GDT_Float32)
for i in range(band):
dst_ds.GetRasterBand(i + 1).WriteArray(data[i, :, :]) # gdal的band从1开始所以dst_ds.GetRasterBand(i+1)
dst_ds = None
# 是否转辐亮度0→不转1→转
rad_switch = 0
img = r'D:\py_program\corning410\record_system_v24\baiban_record'
img_baiban = r'D:\py_program\corning410\record_system_v24\baiban'
img_gain = r'D:\py_program\corning410\corning410_radiance_calibration\jfq_dn_gain'
img_offset = r'D:\py_program\corning410\record_system_v24\dark'
dirpath = os.path.splitext(img)
# 读取影像
proj, geotrans, data = Grid.read_img(img)
proj_baiban, geotrans_baiban, data_baiban = Grid.read_img(img_baiban)
proj_gain, geotrans_gain, data_gain = Grid.read_img(img_gain)
proj_offset, geotrans_offset, data_offset = Grid.read_img(img_offset)
data_baiban = np.mean(data_baiban, axis=1)
data_offset = np.mean(data_offset, axis=1)
if rad_switch == 1:
# 计算辐射定标参数
cal_it = 6059
target_it = 200004
gain_scale = cal_it / target_it
data_gain_adjust = data_gain * gain_scale
# 影像和白板1、扣除暗电流2、转换成辐亮度
data_baiban = data_baiban - data_offset # 白板扣除暗电流
data_baiban_rad = data_baiban * data_gain_adjust[:, 0, :] # 白板转辐亮度
data_rad = np.empty(data.shape)
for i in range(data.shape[1]):
data_rad[:, i, :] = (data[:, i, :] - data_offset) * data_gain_adjust[:, 0, :] # 转辐亮度
Grid.write_img(dirpath[0] + '_rad', data_rad)
# 转换成反射率
data_rad_ref = np.empty(data.shape)
for i in range(data.shape[1]):
data_rad_ref[:, i, :] = data_rad[:, i, :] / data_baiban_rad # 转反射率
Grid.write_img(dirpath[0] + '_rad_ref', data_rad_ref)
elif rad_switch == 0:
# 影像和白板扣除暗电流
data_baiban = data_baiban - data_offset
data_rmdark = np.empty(data.shape)
for i in range(data.shape[1]):
data_rmdark[:, i, :] = (data[:, i, :] - data_offset)
# 转反射率
data_ref = np.empty(data.shape)
for i in range(data.shape[1]):
data_ref[:, i, :] = data_rmdark[:, i, :] / data_baiban # 转反射率
Grid.write_img(dirpath[0] + '_ref', data_ref)