102 lines
3.9 KiB
Python
102 lines
3.9 KiB
Python
'''
|
||
https://blog.csdn.net/vonuo/article/details/74783291
|
||
本方法是使用asd的方法来进行corning的辐亮度定标(resonon的方法感觉和此方法差不多)
|
||
'''
|
||
from osgeo import gdal
|
||
import os, math
|
||
import sys
|
||
import easygui
|
||
import numpy as np
|
||
import pandas as pd
|
||
import xlwt
|
||
|
||
# 读写影像类
|
||
class Grid(object):
|
||
|
||
#读图像文件
|
||
@classmethod
|
||
def read_img(cls, filename, xoff=0, yoff=0, im_width=None, im_height=None):
|
||
try:
|
||
dataset = gdal.Open(filename) # 打开文件
|
||
if im_width == None:
|
||
im_width = dataset.RasterXSize # 栅格矩阵的列数
|
||
if im_height == None:
|
||
im_height = dataset.RasterYSize # 栅格矩阵的行数
|
||
num_bands = dataset.RasterCount # 栅格矩阵的波段数
|
||
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
|
||
im_proj = dataset.GetProjection() # 地图投影信息
|
||
im_data = dataset.ReadAsArray(xoff, yoff, im_width, im_height) # 将数据写成数组,对应栅格矩阵
|
||
del dataset
|
||
return im_proj, im_geotrans, im_data
|
||
except:
|
||
sys.exit()
|
||
|
||
#写文件,以写成tif为例
|
||
@classmethod
|
||
def write_img(cls, dst_filename, data):
|
||
format = "ENVI"
|
||
driver = gdal.GetDriverByName(format)
|
||
RasterXSize = data.shape[2] # 遥感影像的sample(列数)
|
||
RasterYSize = data.shape[1] # 遥感影像的line(行数)
|
||
band = data.shape[0]
|
||
# driver.Create()函数中RasterXSize代表影像的sample(列数),RasterYSize代表影像的line(行数)
|
||
dst_ds = driver.Create(dst_filename, RasterXSize, RasterYSize, band, gdal.GDT_Float32)
|
||
for i in range(band):
|
||
dst_ds.GetRasterBand(i + 1).WriteArray(data[i, :, :]) # gdal的band从1开始,所以dst_ds.GetRasterBand(i+1)
|
||
dst_ds = None
|
||
|
||
# 是否转辐亮度:0→不转,1→转
|
||
rad_switch = 0
|
||
|
||
img = r'D:\py_program\corning410\record_system_v24\baiban_record'
|
||
img_baiban = r'D:\py_program\corning410\record_system_v24\baiban'
|
||
img_gain = r'D:\py_program\corning410\corning410_radiance_calibration\jfq_dn_gain'
|
||
img_offset = r'D:\py_program\corning410\record_system_v24\dark'
|
||
|
||
|
||
dirpath = os.path.splitext(img)
|
||
|
||
# 读取影像
|
||
proj, geotrans, data = Grid.read_img(img)
|
||
proj_baiban, geotrans_baiban, data_baiban = Grid.read_img(img_baiban)
|
||
proj_gain, geotrans_gain, data_gain = Grid.read_img(img_gain)
|
||
proj_offset, geotrans_offset, data_offset = Grid.read_img(img_offset)
|
||
|
||
data_baiban = np.mean(data_baiban, axis=1)
|
||
data_offset = np.mean(data_offset, axis=1)
|
||
|
||
if rad_switch == 1:
|
||
# 计算辐射定标参数
|
||
cal_it = 6059
|
||
target_it = 200004
|
||
gain_scale = cal_it / target_it
|
||
data_gain_adjust = data_gain * gain_scale
|
||
|
||
# 影像和白板:1、扣除暗电流;2、转换成辐亮度;
|
||
data_baiban = data_baiban - data_offset # 白板扣除暗电流
|
||
data_baiban_rad = data_baiban * data_gain_adjust[:, 0, :] # 白板转辐亮度
|
||
|
||
data_rad = np.empty(data.shape)
|
||
for i in range(data.shape[1]):
|
||
data_rad[:, i, :] = (data[:, i, :] - data_offset) * data_gain_adjust[:, 0, :] # 转辐亮度
|
||
Grid.write_img(dirpath[0] + '_rad', data_rad)
|
||
|
||
# 转换成反射率
|
||
data_rad_ref = np.empty(data.shape)
|
||
for i in range(data.shape[1]):
|
||
data_rad_ref[:, i, :] = data_rad[:, i, :] / data_baiban_rad # 转反射率
|
||
|
||
Grid.write_img(dirpath[0] + '_rad_ref', data_rad_ref)
|
||
elif rad_switch == 0:
|
||
# 影像和白板扣除暗电流
|
||
data_baiban = data_baiban - data_offset
|
||
data_rmdark = np.empty(data.shape)
|
||
for i in range(data.shape[1]):
|
||
data_rmdark[:, i, :] = (data[:, i, :] - data_offset)
|
||
|
||
# 转反射率
|
||
data_ref = np.empty(data.shape)
|
||
for i in range(data.shape[1]):
|
||
data_ref[:, i, :] = data_rmdark[:, i, :] / data_baiban # 转反射率
|
||
Grid.write_img(dirpath[0] + '_ref', data_ref)
|