Compare commits
5 Commits
6e6849b747
...
d0d897674b
Author | SHA1 | Date | |
---|---|---|---|
d0d897674b | |||
0d689e745b | |||
46eefb95f5 | |||
491fd6dd55 | |||
6247cfe207 |
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,6 +1,8 @@
|
||||
# 唐超添加
|
||||
/.idea
|
||||
|
||||
/problem
|
||||
/sample_data
|
||||
/paper
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
|
11
2023_05_01_08_05_50.csv
Normal file
11
2023_05_01_08_05_50.csv
Normal file
File diff suppressed because one or more lines are too long
BIN
sample_data/sifTmp2.7z
Normal file
BIN
sample_data/sifTmp2.7z
Normal file
Binary file not shown.
@ -6,11 +6,16 @@ def cal_inside_bands_ave(data):
|
||||
'''
|
||||
根据多个光谱找出窗口内数据最低点对应波长
|
||||
'''
|
||||
sky_spec = data.sky
|
||||
veg_spec = data.veg
|
||||
wvl_inside_band_l = np.mean(veg_spec.idxmin(dim='Wavelength')).values
|
||||
wvl_inside_band_e = np.mean(sky_spec.idxmin(dim='Wavelength')).values
|
||||
return[wvl_inside_band_l,wvl_inside_band_e]
|
||||
sky_spec = data.sky.to_pandas().between_time('10:00:00', '15:00:00')
|
||||
veg_spec = data.veg.to_pandas().between_time('10:00:00', '15:00:00')
|
||||
|
||||
sky_idxmin = sky_spec.idxmin(axis=1)
|
||||
veg_idxmin = veg_spec.idxmin(axis=1)
|
||||
|
||||
wvl_inside_band_l = veg_idxmin.mean()
|
||||
wvl_inside_band_e = sky_idxmin.mean()
|
||||
|
||||
return[wvl_inside_band_l, wvl_inside_band_e]
|
||||
|
||||
def cal_outside_values_mean(data,outer):
|
||||
'''
|
||||
@ -38,7 +43,9 @@ def sfld(data,wl_range,outer):
|
||||
nmeas_ = data.Measures.size
|
||||
|
||||
data = data.where((data.Wavelength>wl_range[0])&(data.Wavelength<wl_range[1]),drop=True)
|
||||
[wvl_inside_band_l,wvl_inside_band_e]=cal_inside_bands_ave(data)
|
||||
|
||||
data2 = data.where((data.Wavelength > outer[1]) & (data.Wavelength < outer[1] + 3), drop=True)
|
||||
[wvl_inside_band_l,wvl_inside_band_e]=cal_inside_bands_ave(data2)
|
||||
for i in range(0,nmeas_):
|
||||
_data = data.isel(Measures=i)
|
||||
veg_out,sky_out,_ = cal_outside_values_mean(_data,outer)
|
||||
@ -67,7 +74,9 @@ def fld3(data,wl_range,outer_left,outer_right):
|
||||
nmeas_ = data.Measures.size
|
||||
|
||||
data = data.where((data.Wavelength>wl_range[0])&(data.Wavelength<wl_range[1]),drop=True)
|
||||
[wvl_inside_band_l,wvl_inside_band_e]=cal_inside_bands_ave(data)
|
||||
|
||||
data2 = data.where((data.Wavelength > outer_left[1]) & (data.Wavelength < outer_right[0]), drop=True)
|
||||
[wvl_inside_band_l,wvl_inside_band_e]=cal_inside_bands_ave(data2) # 应该局限到759-761
|
||||
for i in range(0,nmeas_):
|
||||
_data = data.isel(Measures=i)
|
||||
veg_out_left,sky_out_left,wvl_outer_left = cal_outside_values_mean(_data,outer_left)
|
||||
@ -237,6 +246,10 @@ def doas(data,wl_range,band=760):
|
||||
print(data.Measures[i].values)
|
||||
sky_spec = data.sky[i].values
|
||||
veg_spec = data.veg[i].values
|
||||
|
||||
veg_spec[np.where(veg_spec < 0)] = 0
|
||||
sky_spec[np.where(sky_spec < 0)] = 0
|
||||
|
||||
_X = np.concatenate([_ref_base,(_hf/(veg_spec+0.000001111)).reshape(1,-1)]).T
|
||||
_y = np.log(veg_spec+0.000001111) - np.log(sky_spec+0.00000111111)
|
||||
_B = np.linalg.lstsq(_X,_y,rcond=-1)
|
||||
|
@ -65,7 +65,7 @@ def read_files(f):
|
||||
'''
|
||||
with open(f) as csvfile:
|
||||
data = list(csv.reader(csvfile)) # 读csv并转化为list
|
||||
# data = np.array(data)
|
||||
data = [[element for element in row if element != ''] for row in data] # 去掉每行的空字符
|
||||
data = np.array(data, dtype=object) # 转化为np数组
|
||||
data = [np.array(d) for d in data]
|
||||
csvfile.close()
|
||||
@ -123,11 +123,19 @@ def map_files(f):
|
||||
'''
|
||||
遍历文件
|
||||
'''
|
||||
dt = pd.to_datetime(f.split('\\')[-1][:-4], format='%Y_%m_%d_%H_%M_%S')
|
||||
data = read_files(f)
|
||||
data = data_parser(data, dt)
|
||||
# par_ls.append(par)
|
||||
return data # data是列表:第一个是光谱数据,第二个是元信息
|
||||
try:
|
||||
dt = pd.to_datetime(f.split('\\')[-1][:-4], format='%Y_%m_%d_%H_%M_%S')
|
||||
data = read_files(f) # 每个list都是一个np数组
|
||||
data = data_parser(data, dt)
|
||||
except Exception as e:
|
||||
print("Reading error: %s" % f)
|
||||
else: # 如果打开没有出错
|
||||
# par_ls.append(par)
|
||||
return data # data是列表:第一个是光谱数据,第二个是元信息
|
||||
finally:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
# def map_files(i):
|
||||
# result = i * i
|
||||
@ -160,11 +168,21 @@ def processing(standard_sif, folder, out_file, pars, data, header, sky_p='P1', m
|
||||
# _ = _.where((_.Wavelength>731.3)&(_.Wavelength<782),drop=True)
|
||||
|
||||
sky = _.sel(point=sky_p, drop=True).rename('sky')
|
||||
# 质量控制
|
||||
tmp = sky.values
|
||||
tmp[tmp < 0] = 0.0000000000000001
|
||||
sky.values = tmp
|
||||
|
||||
for p in _.point:
|
||||
if p == sky_p:
|
||||
continue
|
||||
else:
|
||||
veg = _.sel(point=p, drop=True).rename('veg')
|
||||
# 质量控制
|
||||
tmp = veg.values
|
||||
tmp[tmp < 0] = 0.0000000000000001
|
||||
veg.values = tmp
|
||||
|
||||
input_each = xr.merge([sky, veg])
|
||||
_hf = intep(standard_sif, input_each.Wavelength.values) # 将标准sif插值匹配到数据的波长
|
||||
input_each['hf'] = (['Wavelength'], _hf)
|
||||
@ -281,4 +299,5 @@ def main():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Version: 2.3.6')
|
||||
main()
|
||||
|
Reference in New Issue
Block a user