from util import * from osgeo import gdal import argparse def xml2shp(): pass def rasterize_envi_xml(shp_filepath): pass @timeit def rasterize_shp(shp_filepath, raster_fn_out, img_path, NoData_value=0): dataset = gdal.Open(img_path) im_width = dataset.RasterXSize im_height = dataset.RasterYSize geotransform = dataset.GetGeoTransform() imgdata_in = dataset.GetRasterBand(1).ReadAsArray() del dataset # Open the data source and read in the extent source_ds = gdal.OpenEx(shp_filepath) # about 25 metres(ish) use 0.001 if you want roughly 100m pixel_size = geotransform[1] raster_fn_out_tmp = append2filename(raster_fn_out, "_tmp_delete") gdal.Rasterize(raster_fn_out_tmp, source_ds, format='envi', outputType=gdal.GDT_Byte, noData=NoData_value, initValues=NoData_value, xRes=pixel_size, yRes=-pixel_size, allTouched=True, burnValues=1) dataset_tmp = gdal.Open(raster_fn_out_tmp) geotransform_tmp = dataset_tmp.GetGeoTransform() inv_geotransform_tmp = gdal.InvGeoTransform(geotransform_tmp) data_tmp = dataset_tmp.GetRasterBand(1).ReadAsArray() del dataset_tmp # 创建和输入影像相同行列号、相同分辨率的水域掩膜,方便后续使用 water_mask = np.zeros((im_height, im_width)) for row in range(im_height): for column in range(im_width): coor = gdal.ApplyGeoTransform(geotransform, column, row) coor_pixel = gdal.ApplyGeoTransform(inv_geotransform_tmp, coor[0], coor[1]) coor_pixel = [int(num) for num in coor_pixel] if coor_pixel[0] < 0 or coor_pixel[0] >= data_tmp.shape[1]: continue if coor_pixel[1] < 0 or coor_pixel[1] >= data_tmp.shape[0]: continue if imgdata_in[row, column] == 0: # 当shp区域比影像区域大时,略过 continue water_mask[row, column] = data_tmp[coor_pixel[1], coor_pixel[0]] write_bands(img_path, raster_fn_out, water_mask) os.remove(raster_fn_out_tmp) def calculate_NDWI(green_bandnumber, nir_bandnumber, filename): dataset = gdal.Open(filename) # 打开文件 num_bands = dataset.RasterCount # 栅格矩阵的波段数 im_geotrans = dataset.GetGeoTransform() # 仿射矩阵 im_proj = dataset.GetProjection() # 地图投影信息 tmp = dataset.GetRasterBand(green_bandnumber + 1) # 波段计数从1开始 band_green = tmp.ReadAsArray().astype(np.int16) tmp = dataset.GetRasterBand(nir_bandnumber + 1) # 波段计数从1开始 band_nir = tmp.ReadAsArray().astype(np.int16) ndwi = (band_green - band_nir) / (band_green + band_nir) del dataset return ndwi def extract_water(ndwi, threshold=0.3, data_ignore_value=0): water_region = np.where(ndwi > threshold, 1, data_ignore_value) return water_region def ndwi(file_path, ndwi_threshold=0.4, output_path=None, data_ignore_value=0): if output_path is None: output_path = append2filename(file_path, "_waterarea") dataset_in = gdal.Open(file_path) im_width_in = dataset_in.RasterXSize # 栅格矩阵的列数 im_height_in = dataset_in.RasterYSize # 栅格矩阵的行数 num_bands_in = dataset_in.RasterCount # 栅格矩阵的波段数 geotrans_in = dataset_in.GetGeoTransform() # 仿射矩阵 proj_in = dataset_in.GetProjection() # 地图投影信息 del dataset_in green_wave = 552.19 nir_wave = 809.2890 green_band_number = find_band_number(green_wave, file_path) nir_band_number = find_band_number(nir_wave, file_path) ndwi = calculate_NDWI(green_band_number, nir_band_number, file_path) water_binary = extract_water(ndwi, threshold=ndwi_threshold) # 0.4 write_bands(file_path, output_path, water_binary) return output_path def main(): parser = argparse.ArgumentParser(description="此程序用于提取水域区域,输出的水域栅格和输入的影像具有相同的行列数。") # parser.add_argument("--global_arg", type=str, help="A global argument for all modes", required=True) # 创建子命令解析器 subparsers = parser.add_subparsers(dest="algorithm", required=True, help="Choose a mode") rasterize_shp_ = subparsers.add_parser("rasterize_shp", help="Mode 1 description") rasterize_shp_.add_argument('-i1', '--img_path', type=str, required=True, help='输入影像文件的路径') rasterize_shp_.add_argument('-i2', '--shp_path', type=str, required=True, help='输入shp文件的路径') rasterize_shp_.add_argument('-o', '--water_mask_outpath', required=True, type=str, help='输出水体掩膜文件的路径') rasterize_shp_.set_defaults(func=rasterize_shp) ndwi_ = subparsers.add_parser("ndwi", help="Mode 2 description") ndwi_.add_argument('-i1', '--img_path', type=str, required=True, help='输入影像文件的路径') ndwi_.add_argument('-i2', '--ndwi_threshold', type=float, required=True, help='输入ndwi水体阈值,大于此值的为水域') ndwi_.add_argument('-o', '--water_mask_outpath', required=True, type=str, help='输出水体掩膜文件的路径') ndwi_.set_defaults(func=ndwi) # 解析参数 args = parser.parse_args() if args.algorithm == "rasterize_shp": args.func(args.shp_path, args.water_mask_outpath, args.img_path) elif args.algorithm == "ndwi": args.func(args.img_path, args.ndwi_threshold, args.water_mask_outpath) # Press the green button in the gutter to run the script. if __name__ == '__main__': main()