import numpy as np import pandas as pd import os from sklearn import datasets, linear_model import argparse class GasAnalyzer(): def __init__(self, folderPath): self.folderPath = folderPath def read_data(self): path_list = os.listdir(self.folderPath) self.validFiles = [] for filename in path_list: if os.path.splitext(filename)[1] == '.txt': self.validFiles.append(filename) # 这两个循环可以合并优化,但不确定是否可以提高性能 names = locals() self.rowCountsBackup = [] for i, filename in enumerate(self.validFiles): names[f'df_{i}'] = pd.read_csv(self.folderPath + "\\" + filename, skiprows=1, sep=',') self.rowCountsBackup.append(names[f'df_{i}'].shape[0]) for x in range(len(self.rowCountsBackup)): if(x==0): self.df_total = names[f'df_{0}'] else: self.df_total = pd.concat([self.df_total, names[f'df_{x}']]) if(sum(self.rowCountsBackup) != self.df_total.shape[0]): print("拼接气体分析仪数据失败!拼接前后行数不一致!") return 1 return 0 def write_data(self): a = 1 def merge_data(self, MeteorologicalStation): a = 1 class MeteorologicalStation(): def __init__(self, folderPath): self.folderPath = folderPath def read_data(self): path_list = os.listdir(self.folderPath) self.validFiles = [] for filename in path_list: if os.path.splitext(filename)[1] == '.dat': self.validFiles.append(filename) # 这两个循环可以合并优化,但不确定是否可以提高性能 names = locals() self.rowCountsBackup = [] for i, filename in enumerate(self.validFiles): names[f'df_{i}'] = pd.read_csv(self.folderPath + "\\" + filename, header=None, sep=',') self.rowCountsBackup.append(names[f'df_{i}'].shape[0]) for x in range(len(self.rowCountsBackup)): if(x==0): self.df_total = names[f'df_{0}'] else: self.df_total = pd.concat([self.df_total, names[f'df_{x}']]) if(sum(self.rowCountsBackup) != self.df_total.shape[0]): print("拼接气体分析仪数据失败!拼接前后行数不一致!") return 1 return 0 if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument("csv_path", help="Path of csv file which contains wavelength.") # parser.add_argument("start_row", help="Start row of coning 410 sensor.") # args = parser.parse_args() # row_bin1, wave_bin1, row_bin2, wave_bin2 = read_data(args.csv_path, int(args.start_row)) GasAnalyzer_folderPath = r"D:\PycharmProjects\weatherInstrument\2022neimengdata\气体分析仪\2022-08-13" MeteorologicalStation_folderPath = r"D:\PycharmProjects\weatherInstrument\2022neimengdata\气象站\2022_08_13" tmp1 = GasAnalyzer(GasAnalyzer_folderPath) tmp1.read_data() tmp2 = MeteorologicalStation(MeteorologicalStation_folderPath) tmp2.read_data() print("completed!!")