Merge remote-tracking branch 'origin/TC'

This commit is contained in:
xin
2022-05-05 15:38:18 +08:00
11 changed files with 438 additions and 97 deletions

View File

@ -3,6 +3,7 @@
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
#pragma once #pragma once
//#include "pch.h" //#include "pch.h"
#include "ZZ_Types.h" #include "ZZ_Types.h"
#include "ZZ_Math.h" #include "ZZ_Math.h"
#include <QSerialPort> #include <QSerialPort>
@ -14,7 +15,7 @@ using namespace ZZ_MISCDEF;
using namespace ZZ_MISCDEF::ATP; using namespace ZZ_MISCDEF::ATP;
using namespace ZZ_MISCDEF::IRIS::FS; using namespace ZZ_MISCDEF::IRIS::FS;
class ZZ_ATPControl_Serial_Qt :public CIrisFSBase class ZZ_ATPControl_Serial_Qt:public CIrisFSBase
{ {
Q_OBJECT Q_OBJECT
public: public:
@ -33,10 +34,10 @@ public:
void Close(); void Close();
//<2F><><EFBFBD>β<EFBFBD><CEB2>Բɼ<D4B2> <20><><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD>β<EFBFBD><CEB2>Բɼ<D4B2> <20><><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int SingleShot(int& iPixels); int SingleShot(int &iPixels);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݲɼ<DDB2> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݲɼ<DDB2>
int SingleShot(DataFrame& dfData); int SingleShot(DataFrame &dfData);
//<2F><><EFBFBD>ΰ<EFBFBD><CEB0><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɼ<EFBFBD> //<2F><><EFBFBD>ΰ<EFBFBD><CEB0><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɼ<EFBFBD>
//int SingleShotDark(ATPDataFrame &dfData); //int SingleShotDark(ATPDataFrame &dfData);
@ -46,15 +47,15 @@ public:
int SetExposureTime(int iExposureTimeInMS); int SetExposureTime(int iExposureTimeInMS);
//<2F><>ȡ<EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><>ȡ<EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int GetExposureTime(int& iExposureTimeInMS); int GetExposureTime(int &iExposureTimeInMS);
//int GetWaveLength(float *pfWaveLength); //int GetWaveLength(float *pfWaveLength);
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ //<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ
int GetDeviceInfo(DeviceInfo& Info); int GetDeviceInfo(DeviceInfo &Info);
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int GetDeviceAttribute(DeviceAttribute& Attr); int GetDeviceAttribute(DeviceAttribute &Attr);
//int GetDeviceListInfo(); //use type name to enum //int GetDeviceListInfo(); //use type name to enum
@ -62,10 +63,12 @@ public:
int SetDeviceTemperature(float fTemperature); int SetDeviceTemperature(float fTemperature);
//<2F><>ȡ<EFBFBD><EFBFBD> //<2F><>ȡ<EFBFBD><EFBFBD>
int GetDeviceTemperature(float& fTemperature); int GetDeviceTemperature(float &fTemperature);
//<2F>Զ<EFBFBD><D4B6>ع<EFBFBD> //<2F>Զ<EFBFBD><D4B6>ع<EFBFBD>
int PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float& fPredictedExposureTime); int PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime);
private:
int SetAvgTimes(int iTimes = 1);
#ifdef _DEBUG #ifdef _DEBUG
public: public:
@ -74,7 +77,7 @@ private:
#endif #endif
//port //port
int m_iBaudRate; int m_iBaudRate;
QSerialPort* m_pSerialPort; QSerialPort *m_pSerialPort;
//ATP //ATP
DeviceInfo m_diDeviceInfo; DeviceInfo m_diDeviceInfo;
@ -94,6 +97,6 @@ public slots:
int Init_Self(); int Init_Self();
signals: signals:
void SignalInit_Self(); void SignalInit_Self();
//private slots : //private slots :
//void ReadMessage(); //void ReadMessage();
}; };

View File

@ -30,6 +30,14 @@ public:
virtual void singleShot(DataFrame &dfData) = 0; virtual void singleShot(DataFrame &dfData) = 0;
// typedef struct coeffs
// {
// ZZ_U32 coeffsCounter;
// double coeffs[100];
// }coeffsFrame;
virtual void getNonlinearityCoeffs(coeffsFrame &coeffs) = 0;
// ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number) = 0; // ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number) = 0;
DataFrame m_IntegratingSphereData; DataFrame m_IntegratingSphereData;

View File

@ -30,6 +30,12 @@ namespace ZZ_MISCDEF
double dTimes = 0; double dTimes = 0;
}DataFrame; }DataFrame;
typedef struct coeffs//tc<74><63><EFBFBD><EFBFBD>-----------------------
{
ZZ_U32 coeffsCounter;
double coeffs[100];
}coeffsFrame;
typedef struct tagDeviceInfo typedef struct tagDeviceInfo
{ {
std::string strPN; std::string strPN;

View File

@ -31,6 +31,8 @@ public:
void singleShot(DataFrame &dfData); void singleShot(DataFrame &dfData);
void getNonlinearityCoeffs(coeffsFrame &coeffs);
ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number); ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number);
// DataFrame m_IntegratingSphereData; // DataFrame m_IntegratingSphereData;

View File

@ -11,6 +11,7 @@
#include "IrisFiberSpectrometerBase.h" #include "IrisFiberSpectrometerBase.h"
#include "api/seabreezeapi/SeaBreezeAPI.h" #include "api/seabreezeapi/SeaBreezeAPI.h"
#include "api/seabreezeapi/NonlinearityCoeffsFeatureAdapter.h"
using namespace std; using namespace std;
@ -53,6 +54,7 @@ public:
//tc //tc
static const char* get_error_string(int error); static const char* get_error_string(int error);
void test_nonlinearity_coeffs_feature();
private: private:
int m_iSpectralmeterHandle; int m_iSpectralmeterHandle;
DeviceInfo m_deviceInfo; DeviceInfo m_deviceInfo;

View File

@ -14,7 +14,7 @@ class OceanOpticsFiberImager :public QObject,public FiberSpectrometerOperationBa
Q_OBJECT Q_OBJECT
public: public:
OceanOpticsFiberImager(); OceanOpticsFiberImager(double * nonlinearityCoeffs, int numberOfCoeffs);
~OceanOpticsFiberImager(); ~OceanOpticsFiberImager();
OceanOptics_lib * m_FiberSpectrometer; OceanOptics_lib * m_FiberSpectrometer;
@ -31,12 +31,20 @@ public:
void singleShot(DataFrame &dfData); void singleShot(DataFrame &dfData);
void getNonlinearityCoeffs(coeffsFrame &coeffs);
ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number); ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϣ<EFBFBD><CFA2><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ÿ<EFBFBD>ζ<EFBFBD><CEB6><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
DeviceInfo m_deviceInfo;
DeviceAttribute m_deviceAttribute;
// DataFrame m_IntegratingSphereData; // DataFrame m_IntegratingSphereData;
// DataFrame m_DarkData; // DataFrame m_DarkData;
protected: protected:
private: private:
double * m_nonlinearityCoeffs;
int m_iNumberOfNonlinearityCoeffs;
// ZZ_U32 m_MaxValueOfFiberSpectrometer; // ZZ_U32 m_MaxValueOfFiberSpectrometer;

View File

@ -9,7 +9,7 @@ ZZ_ATPControl_Serial_Qt::ZZ_ATPControl_Serial_Qt(QObject* parent /*= nullptr*/)
//emit SignalInit_Self(); //emit SignalInit_Self();
} }
ZZ_ATPControl_Serial_Qt::~ZZ_ATPControl_Serial_Qt() ZZ_ATPControl_Serial_Qt::~ZZ_ATPControl_Serial_Qt()//
{ {
if (m_pSerialPort != NULL) if (m_pSerialPort != NULL)
{ {
@ -72,7 +72,7 @@ int ZZ_ATPControl_Serial_Qt::Initialize(bool bIsUSBMode, std::string ucPortNumbe
GetDeviceInfo(m_diDeviceInfo); GetDeviceInfo(m_diDeviceInfo);
GetExposureTime_Init(); GetExposureTime_Init();
SetAvgTimes(1);
std::string::size_type szPostion = m_diDeviceInfo.strSN.find(strDeviceName); std::string::size_type szPostion = m_diDeviceInfo.strSN.find(strDeviceName);
if (szPostion == std::string::npos) if (szPostion == std::string::npos)
@ -196,15 +196,15 @@ int ZZ_ATPControl_Serial_Qt::GetDeviceAttribute(DeviceAttribute &Attr)
} }
m_daDeviceAttr.iMaxIntegrationTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256; m_daDeviceAttr.iMaxIntegrationTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
///
int iTempExpTime = 0; int iTempExpTime = 0;
GetExposureTime(iTempExpTime); GetExposureTime(iTempExpTime);
iRes = SetExposureTime(10); iRes = SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);
if (iRes != 0) if (iRes != 0)
{ {
qDebug() << "Err:GetDeviceAttribute Failed,Call SetExposureTime error.Exit Code:2"; qDebug() << "Err:GetDeviceAttribute Failed,Call SetExposureTime error.Exit Code:2";
return 2; //return 2;
} }
iRes = SingleShot(m_daDeviceAttr.iPixels); iRes = SingleShot(m_daDeviceAttr.iPixels);
if (iRes != 0) if (iRes != 0)
@ -214,8 +214,7 @@ int ZZ_ATPControl_Serial_Qt::GetDeviceAttribute(DeviceAttribute &Attr)
} }
SetExposureTime(iTempExpTime); SetExposureTime(iTempExpTime);
///
qbSend.clear(); qbSend.clear();
qbRecv.clear(); qbRecv.clear();
qbSend.append(GET_WAVELENGTH_CALIBRATION_COEF); qbSend.append(GET_WAVELENGTH_CALIBRATION_COEF);
@ -257,6 +256,36 @@ int ZZ_ATPControl_Serial_Qt::SetDeviceTemperature(float fTemperature)
return 0; return 0;
} }
int ZZ_ATPControl_Serial_Qt::SetAvgTimes(int iTimes /*= 1*/)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(SET_AVERAGE_NUMBER);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:3";
return 3;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::GetExposureTime_Init() int ZZ_ATPControl_Serial_Qt::GetExposureTime_Init()
{ {
QByteArray qbSend, qbRecv; QByteArray qbSend, qbRecv;
@ -326,7 +355,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData(QByteArray &qbData)
int iCounter = 0; int iCounter = 0;
while (qbData.size() < 4) while (qbData.size() < 4)
{ {
m_pSerialPort->waitForReadyRead(1000); m_pSerialPort->waitForReadyRead(5000);
QByteArray qbTemp = m_pSerialPort->readAll(); QByteArray qbTemp = m_pSerialPort->readAll();
qbData.append(qbTemp); qbData.append(qbTemp);
@ -335,7 +364,6 @@ int ZZ_ATPControl_Serial_Qt::RecvData(QByteArray &qbData)
qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size(); qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1; return 1;
} }
iCounter++; iCounter++;
} }
@ -397,7 +425,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if (iCounter > 6) if (iCounter > 6)
{ {
qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size(); qDebug() << "Err:RecvData_ShortLag Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1; return 1;
} }
iCounter++; iCounter++;
@ -405,7 +433,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if ((ZZ_U8)qbData[0] != (ZZ_U8)0xaa || (ZZ_U8)qbData[1] != (ZZ_U8)0x55) if ((ZZ_U8)qbData[0] != (ZZ_U8)0xaa || (ZZ_U8)qbData[1] != (ZZ_U8)0x55)
{ {
qDebug() << "Err:RecvData Failed,Wrong Header.Exit Code:2" << qbData.size(); qDebug() << "Err:RecvData_ShortLag Failed,Wrong Header.Exit Code:2" << qbData.size();
return 2; return 2;
} }
@ -418,7 +446,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if (iCounter > 6) if (iCounter > 6)
{ {
qDebug() << "Err:RecvData Failed,Incomplete Data.Exit Code:3" << qbData.size(); qDebug() << "Err:RecvData_ShortLag Failed,Incomplete Data.Exit Code:3" << qbData.size();
return 3; return 3;
} }
iCounter++; iCounter++;
@ -438,7 +466,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
ZZ_U8 ucTemp = qbData[qbData.size() - 1]; ZZ_U8 ucTemp = qbData[qbData.size() - 1];
if ((ZZ_U8)usCheckSum != ucTemp) if ((ZZ_U8)usCheckSum != ucTemp)
{ {
qDebug() << "Err:RecvData Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp; qDebug() << "Err:RecvData_ShortLag Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp;
//qbData.clear(); //qbData.clear();
//return 4; //return 4;
return 0; return 0;
@ -467,16 +495,9 @@ int ZZ_ATPControl_Serial_Qt::Init_Self()
int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime) int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime)
{ {
int m_iThreadID=0;
// qDebug() << "--------------------------Starting PerformAutoExposure" << " Thread ID:" << m_iThreadID;
using namespace ZZ_MATH; using namespace ZZ_MATH;
// float fPredictedExposureTime;
int iDeviceDepth = 65535; int iDeviceDepth = 65535;
// qDebug() << "MAX---Min" << fMaxScaleFactor << "---" << fMinScaleFactor << " Thread ID:" << m_iThreadID;
bool bFlagIsOverTrying = false; bool bFlagIsOverTrying = false;
bool bFlagIsLowerMinExposureTime = false; bool bFlagIsLowerMinExposureTime = false;
bool bFlagIsOverMaxExposureTime = false; bool bFlagIsOverMaxExposureTime = false;
@ -486,16 +507,15 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bool bIsValueOverflow = false; bool bIsValueOverflow = false;
bool bIsLastValueOverflow = false; bool bIsLastValueOverflow = false;
int iExposureTime = 0; float fExposureTime = 0;
float fTempExposureTime = 0; float fTempExposureTime = 0;
double fLastExposureTime = 0.1; double fLastExposureTime = 0.1;
int iRepeatCount = 0; int iRepeatCount = 0;
//int iRes = m_pFSCtrl->SetExposureTime(1000);//need change to load from files int iRes = SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);//need change to load from files
int iRes = 0;
if (iRes != 0) if (iRes != 0)
{ {
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1" << " Thread ID:" << m_iThreadID; qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1";
return 1; return 1;
} }
@ -507,63 +527,63 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
{ {
bFlagIsAutoExposureFailed = true; bFlagIsAutoExposureFailed = true;
bFlagIsOverTrying = true; bFlagIsOverTrying = true;
qDebug() << "<EFBFBD><EFBFBD><EFBFBD><EFBFBD>30<EFBFBD><EFBFBD>"<<endl;
break; break;
} }
//m_pFSCtrl->SetExposureTime(5000);
GetExposureTime(iExposureTime); // fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS;
// qDebug() << "Current ExpTime:" << iExposureTime << " Thread ID:" << m_iThreadID; int tc_tmp;
//m_pFSCtrl->SetExposureTime(2500); GetExposureTime(tc_tmp);
//fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS; fExposureTime=tc_tmp;
fTempExposureTime = iExposureTime; fTempExposureTime = fExposureTime;
iRes = SingleShot(dfTemp); iRes = SingleShot(dfTemp);
//iRes = m_pFSCtrl->SingleShot(dfTemp);
if (iRes != 0) if (iRes != 0)
{ {
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2" << " Thread ID:" << m_iThreadID; qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2"<<endl;
return 2; return 2;
} }
HeapSort(dfTemp.lData, m_daDeviceAttr.iPixels); HeapSort(dfTemp.lData, m_daDeviceAttr.iPixels);
double dSum = 0; double dSum = 0;
int iCount = m_daDeviceAttr.iPixels / 200; int iCount = m_daDeviceAttr.iPixels / 100;
for (int i = 0; i < iCount; i++) for (int i = 0; i < iCount; i++)
{ {
dSum += dfTemp.lData[i]; dSum += dfTemp.lData[i];
} }
double dTemp = dSum / iCount; double dTemp = dSum / iCount;
qDebug() << "1111111111111111111111111111111" << dTemp << endl;
// qDebug() << "Avg " << dTemp << " Thread ID:" << m_iThreadID;
if (dTemp >= iDeviceDepth * 0.99) if (dTemp >= iDeviceDepth * 0.99)
{ {
bIsValueOverflow = true; bIsValueOverflow = true;
if (!bIsLastValueOverflow) if (!bIsLastValueOverflow)
{ {
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2; fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
} }
else else
{ {
iExposureTime = iExposureTime / 2; fExposureTime = fExposureTime / 2;
} }
} }
else if (iDeviceDepth * fMaxScaleFactor >= dTemp && dTemp >= iDeviceDepth * fMinScaleFactor) else if (iDeviceDepth * fMaxScaleFactor >= dTemp && dTemp >= iDeviceDepth * fMinScaleFactor)
{ {
// qDebug() << "trace bFlagIsAutoExposureOK =1 " << iExposureTime << " Thread ID:" << m_iThreadID;
bFlagIsAutoExposureOK = 1; bFlagIsAutoExposureOK = 1;
continue;
} }
else if (dTemp > iDeviceDepth * fMaxScaleFactor) else if (dTemp > iDeviceDepth * fMaxScaleFactor)
{ {
bIsValueOverflow = true; bIsValueOverflow = true;
if (!bIsLastValueOverflow) if (!bIsLastValueOverflow)
{ {
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2; fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
} }
else else
{ {
iExposureTime = iExposureTime * 3 / 4; fExposureTime = fExposureTime * 3 / 4;
} }
} }
else if (dTemp < iDeviceDepth * fMinScaleFactor) else if (dTemp < iDeviceDepth * fMinScaleFactor)
@ -571,59 +591,50 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bIsValueOverflow = false; bIsValueOverflow = false;
if (bIsLastValueOverflow) if (bIsLastValueOverflow)
{ {
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2; fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
} }
else else
{ {
double dFactor; double dFactor;
dFactor = dTemp / (iDeviceDepth * fMaxScaleFactor); dFactor = dTemp / (iDeviceDepth * fMaxScaleFactor);
iExposureTime = (float)(iExposureTime / dFactor); fExposureTime = (float)(fExposureTime / dFactor);
} }
if (/*fExposureTime > 100 || */iExposureTime < 10) if (fExposureTime < m_daDeviceAttr.iMinIntegrationTimeInMS)
{ {
bFlagIsAutoExposureOK = false; bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true; bFlagIsAutoExposureFailed = true;
bFlagIsLowerMinExposureTime = true; bFlagIsLowerMinExposureTime = true;
qDebug() << "lower-----------------------"<<endl;
} }
} }
bIsLastValueOverflow = bIsValueOverflow; bIsLastValueOverflow = bIsValueOverflow;
fLastExposureTime = fTempExposureTime; fLastExposureTime = fTempExposureTime;
if (iExposureTime > 65000) if (fExposureTime > 13000)
{ {
bFlagIsAutoExposureOK = false; bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true; bFlagIsAutoExposureFailed = true;
float fPredictedExposureTime = 65000; fPredictedExposureTime = 13000;
iRes = SetExposureTime(65000); iRes = SetExposureTime(13000);
if (iRes != 0) if (iRes != 0)
{ {
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3" << " Thread ID:" << m_iThreadID; qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3";
return 3; return 3;
} }
else
{
//qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to 30sec";
// qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to " << m_daDeviceAttr.iMaxIntegrationTimeInMS << "MS" << " Thread ID:" << m_iThreadID;
}
bFlagIsOverMaxExposureTime = true; bFlagIsOverMaxExposureTime = true;
break; break;
} }
iRes = SetExposureTime((int)iExposureTime); iRes = SetExposureTime((int)fExposureTime);
if (iRes != 0) if (iRes != 0)
{ {
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4" << " Thread ID:" << m_iThreadID; qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4";
return 3; return 3;
} }
else
{
qDebug() << "Success:PerformAutoExposure. Value" << iExposureTime << " Thread ID:" << m_iThreadID;
} }
} fPredictedExposureTime = fExposureTime;
fPredictedExposureTime = iExposureTime;
// qDebug() << "--------------------------Stop PerformAutoExposure" << " Thread ID:" << m_iThreadID;
//emit SignalAcqFinished(m_iThreadID, 1);
return 0; return 0;
} }
@ -668,7 +679,7 @@ int ZZ_ATPControl_Serial_Qt::SetExposureTime(int iExposureTimeInMS)
if ((ZZ_U8)qbRecv[0] != 0) if ((ZZ_U8)qbRecv[0] != 0)
{ {
qDebug() << "Err:SetExposureTime Failed.Exit Code:1"; qDebug() << "Err:SetExposureTime Failed.Exit Code:1";
return 1; //return 1;
} }
return 0; return 0;
@ -717,9 +728,11 @@ int ZZ_ATPControl_Serial_Qt::SingleShot(DataFrame &dfData)
qbSend.resize(3); qbSend.resize(3);
// qbSend[1] = 0x00; // qbSend[1] = 0x00;
// qbSend[2] = 0x01; // qbSend[2] = 0x01;
int iTemp=m_iExposureTime; qbSend[1] = m_iExposureTime >> 8;;
qbSend[1] = iTemp >> 8;; qbSend[2] = m_iExposureTime & 0xFF;
qbSend[2] = iTemp & 0xFF;
qDebug() << "-------------"<<m_iExposureTime<<endl;
int iRes = SendCommand(qbSend); int iRes = SendCommand(qbSend);
if (iRes != 0) if (iRes != 0)
{ {
@ -762,11 +775,9 @@ int ZZ_ATPControl_Serial_Qt::SingleShot(DataFrame &dfData)
// dfData.lData[i] = usData[i]; // dfData.lData[i] = usData[i];
// } // }
} }
float fTemp;
GetDeviceTemperature(fTemp);
dfData.usExposureTimeInMS = m_iExposureTime; dfData.usExposureTimeInMS = m_iExposureTime;
dfData.fTemperature = fTemp;
return 0; return 0;

View File

@ -18,13 +18,13 @@ void ATPFiberImager::connectFiberSpectrometer(QString& SN, QString& pixelCount,
m_FiberSpectrometer = new ZZ_ATPControl_Serial_Qt(); m_FiberSpectrometer = new ZZ_ATPControl_Serial_Qt();
m_FiberSpectrometer->Initialize(false, mUcPortNumber, "ocean_optics"); m_FiberSpectrometer->Initialize(false, mUcPortNumber, "OPTOSKY");
DeviceInfo deviceInfo;// DeviceInfo deviceInfo;//
DeviceAttribute deviceAttribute; DeviceAttribute deviceAttribute;
m_FiberSpectrometer->GetDeviceInfo(deviceInfo); m_FiberSpectrometer->GetDeviceInfo(deviceInfo);
m_FiberSpectrometer->GetDeviceAttribute(deviceAttribute); m_FiberSpectrometer->GetDeviceAttribute(deviceAttribute);//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
SN = QString::fromStdString(deviceInfo.strSN); SN = QString::fromStdString(deviceInfo.strSN);
pixelCount = QString::number(deviceAttribute.iPixels); pixelCount = QString::number(deviceAttribute.iPixels);
@ -86,6 +86,11 @@ void ATPFiberImager::singleShot(DataFrame &dfData)
m_FiberSpectrometer->SingleShot(dfData); m_FiberSpectrometer->SingleShot(dfData);
} }
void ATPFiberImager::getNonlinearityCoeffs(coeffsFrame &coeffs)
{
printf("This is ATPFiberImager.\n");
}
void ATPFiberImager::recordDark(QString path) void ATPFiberImager::recordDark(QString path)
{ {
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ //<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ
@ -171,7 +176,7 @@ void ATPFiberImager::recordTarget(int recordTimes, QString path)
void ATPFiberImager::autoExpose() void ATPFiberImager::autoExpose()
{ {
float fPredictedExposureTime; float fPredictedExposureTime;
m_FiberSpectrometer->PerformAutoExposure(0.7,0.8,fPredictedExposureTime); m_FiberSpectrometer->PerformAutoExposure(0.6,0.9,fPredictedExposureTime);
} }
ZZ_S32 ATPFiberImager::GetMaxValue(ZZ_S32 * dark, int number) ZZ_S32 ATPFiberImager::GetMaxValue(ZZ_S32 * dark, int number)

View File

@ -516,6 +516,77 @@ const char* OceanOptics_lib::get_error_string(int error)
return buffer; return buffer;
} }
void OceanOptics_lib::test_nonlinearity_coeffs_feature()
{
using namespace seabreeze;
using namespace seabreeze::api;
using namespace std;
NonlinearityCoeffsFeatureAdapter tmp();
// int error = 0;
// int number_of_nonlinearity_coeff_features;
// long *nonlinearity_coeff_feature_ids = 0;
// double buffer[10];
// int i;
// int length;
//
// printf("\n\tTesting nonlinearity coefficient features:\n");
//
// printf("\t\tGetting number of nonlinearity coefficient features:\n");
// number_of_nonlinearity_coeff_features =
// sbapi_get_number_of_nonlinearity_coeffs_features(m_iSpectralmeterHandle, &error);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
//
// if(0 == number_of_nonlinearity_coeff_features) {
// printf("\tNo nonlinearity coefficient capabilities found.\n");
//// tallyUnsupportedFeatures(unsupportedFeatureCount);
//
// return;
// }
//
// nonlinearity_coeff_feature_ids =
// (long *)calloc(number_of_nonlinearity_coeff_features, sizeof(long));
// printf("\t\tGetting nonlinearity coefficient feature IDs...\n");
// number_of_nonlinearity_coeff_features = sbapi_get_nonlinearity_coeffs_features(
// m_iSpectralmeterHandle, &error, nonlinearity_coeff_feature_ids,
// number_of_nonlinearity_coeff_features);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
//
// for(i = 0; i < number_of_nonlinearity_coeff_features; i++) {
// printf("\t\t%d: Testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, m_iSpectralmeterHandle, nonlinearity_coeff_feature_ids[i]);
//
// printf("\t\t\tAttempting to get nonlinearity coefficients...\n");
// memset(buffer, (int)0, sizeof(buffer));
// length = sbapi_nonlinearity_coeffs_get(m_iSpectralmeterHandle,
// nonlinearity_coeff_feature_ids[i], &error, buffer, 10);
// printf("\t\t\t\tResult is %d [%s]\n", length, sbapi_get_error_string(error));
//
// if(0 == error && length > 0) {
// printf("\t\t\t\tFirst calibration term: %1.2e\n", buffer[0]);
// }
//
// printf("\t\t%d: Finished testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, m_iSpectralmeterHandle, nonlinearity_coeff_feature_ids[i]);
// }
// free(nonlinearity_coeff_feature_ids);
//
// printf("\tFinished testing nonlinearity coefficient capabilities.\n");
}
string OceanOptics_lib::GetDeviceType(int index) string OceanOptics_lib::GetDeviceType(int index)
{ {
char type[16]; char type[16];

View File

@ -47,6 +47,9 @@ void logout(QString str);
void createDirectory(QString fullPath); void createDirectory(QString fullPath);
bool isFileExist(QString fullFileName); bool isFileExist(QString fullFileName);
int getNonlinearityCoeffs2(long deviceID, double * nonlinearityCoeffs);
int getNonlinearityCoeffs1(double * nonlinearityCoeffs);
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
QCoreApplication a(argc, argv); QCoreApplication a(argc, argv);
@ -85,19 +88,30 @@ int main(int argc, char *argv[])
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƕ<EFBFBD><C7B6><EFBFBD> //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƕ<EFBFBD><C7B6><EFBFBD>
FiberSpectrometerOperationBase * m_FiberSpectrometer; FiberSpectrometerOperationBase * m_FiberSpectrometer;
bool isOcean = false;
double * nonlinearityCoeffs;
int numberOfNonlinearityCoeffs;
switch (query.deviceType) switch (query.deviceType)
{ {
case OPTOSKY: case OPTOSKY:
m_FiberSpectrometer = new ATPFiberImager(false,query.serialPort.toStdString(),"ocean_optics"); m_FiberSpectrometer = new ATPFiberImager(false,query.serialPort.toStdString(),"OPTOSKY");
break; break;
case OceanOptics: case OceanOptics:
m_FiberSpectrometer = new OceanOpticsFiberImager(); {
//ʹ<><CAB9>sbapi<70><69>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD><D1A7><EFBFBD><EFBFBD><EFBFBD>ķ<EFBFBD><C4B7><EFBFBD><EFBFBD>Զ<EFBFBD><D4B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
nonlinearityCoeffs = new double[100];
numberOfNonlinearityCoeffs = getNonlinearityCoeffs1(nonlinearityCoeffs);
m_FiberSpectrometer = new OceanOpticsFiberImager(nonlinearityCoeffs, numberOfNonlinearityCoeffs);
isOcean = true;
break; break;
}
case UnknownDevice: case UnknownDevice:
parser.showHelp(); parser.showHelp();
Q_UNREACHABLE(); Q_UNREACHABLE();
} }
//<2F><><EFBFBD>ӹ<EFBFBD><D3B9><EFBFBD><EFBFBD><EFBFBD> //<2F><><EFBFBD>ӹ<EFBFBD><D3B9><EFBFBD><EFBFBD><EFBFBD>
QString message; QString message;
QString SN; QString SN;
@ -106,9 +120,11 @@ int main(int argc, char *argv[])
logout("<br><b style=\"color:red\">Connectting the fiber spectrometer!</b>"); logout("<br><b style=\"color:red\">Connectting the fiber spectrometer!</b>");
m_FiberSpectrometer->connectFiberSpectrometer(SN, pixelCount, wavelengthInfo); m_FiberSpectrometer->connectFiberSpectrometer(SN, pixelCount, wavelengthInfo);
//<2F>Զ<EFBFBD><D4B6>ع<EFBFBD> //<2F>Զ<EFBFBD><D4B6>ع<EFBFBD>
logout("<br><b style=\"color:red\">AutoExpose!</b>"); logout("<br><b style=\"color:red\">AutoExpose!</b>");
m_FiberSpectrometer->autoExpose(); // m_FiberSpectrometer->autoExpose();
int iExposureTime; int iExposureTime;
m_FiberSpectrometer->getExposureTime(iExposureTime); m_FiberSpectrometer->getExposureTime(iExposureTime);
@ -163,8 +179,36 @@ int main(int argc, char *argv[])
QString destName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + "_" +QString::number(query.position) + ".cal"); QString destName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + "_" +QString::number(query.position) + ".cal");
copyFileToPath(query.calFileOutputName,destName,true); copyFileToPath(query.calFileOutputName,destName,true);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD><D1A7><EFBFBD><EFBFBD><EFBFBD>ķ<EFBFBD><C4B7><EFBFBD><EFBFBD>Զ<EFBFBD><D4B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>
if (isOcean)
{
QDateTime curDateTime = QDateTime::currentDateTime();
QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
QString nonlinearityCoeffsName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + ".nonLinear");
// for (int i = 0; i < numberOfNonlinearityCoeffs; ++i)
// {
// printf("\n");
//
// printf("nonlinearityCoeffs(<28><>%d<><64>): %1.2e\n",i , nonlinearityCoeffs[i]);
//
// printf("\n");
// }
std::ofstream outfile(nonlinearityCoeffsName.toStdString().c_str());
for (int i = 0; i < numberOfNonlinearityCoeffs; i++)
{
outfile << nonlinearityCoeffs[i] << std::endl;
}
outfile.close();
free(nonlinearityCoeffs);
}
//<2F>Ͽ<EFBFBD><CFBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> //<2F>Ͽ<EFBFBD><CFBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
m_FiberSpectrometer->disconnectFiberSpectrometer(); m_FiberSpectrometer->disconnectFiberSpectrometer();//Ҫ<><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE><EFBFBD><EFBFBD>free(nonlinearityCoeffs);
//return a.exec(); //return a.exec();
} }
@ -485,3 +529,155 @@ bool isFileExist(QString fullFileName)
} }
return false; return false;
} }
int getNonlinearityCoeffs1(double * nonlinearityCoeffs)
{
int number_of_devices;
long *device_ids;
int i;
int test_index;
int flag;
int error = 0;
char nameBuffer[80];
/* Give the driver a chance to initialize itself */
sbapi_initialize();
// printf("Probing for devices...\n"); fflush(stdout);
sbapi_probe_devices();
//#define RS232_TEST
#ifdef RS232_TEST
printf("Adding an STS at 9600 baud...\n");
/* Uncomment for Linux */
//sbapi_add_RS232_device_location("STS", "/dev/ttyS0", 9600);
//sbapi_add_RS232_device_location("STS", "/dev/ttyUSB0", 9600);
/* Uncomment for Windows */
//sbapi_add_RS232_device_location("STS", "COM1", 9600);
/* Uncomment for e.g. USB-RS232 adapter under OSX */
//sbapi_add_RS232_device_location("STS", "/dev/tty.KeySerial1", 9600);
//sbapi_add_RS232_device_location("STS", "/dev/tty.usbserial", 9600);
#endif
/* This shows how to add network devices (note that most use TCP/IP) */
//sbapi_add_TCPIPv4_device_location("Jaz", "192.168.1.150", 7654);
//sbapi_add_TCPIPv4_device_location("Blaze", "192.168.1.151", 57357);
// printf("Getting device count...\n"); fflush(stdout);
number_of_devices = sbapi_get_number_of_device_ids();
// printf("Device count is %d\n", number_of_devices);
if(0 == number_of_devices) {
return 0;
}
// printf("Getting device IDs...\n");
device_ids = (long *)calloc(number_of_devices, sizeof(long));
number_of_devices = sbapi_get_device_ids(device_ids, number_of_devices);
// printf("Got %d device ID%s.\n", number_of_devices, number_of_devices == 1 ? "" : "s");
int number;
for(i = 0; i < number_of_devices; i++) {
// printf("%d: Device 0x%02lX:\n", i, device_ids[i]);
// printf("\tGetting device type...\n");
flag = sbapi_get_device_type(device_ids[i], &error, nameBuffer, 79);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
if(flag > 0) {
// printf("\tDevice type: [%s]\n", nameBuffer);
}
/* Open the device */
// printf("\tAttempting to open:\n");
flag = sbapi_open_device(device_ids[i], &error);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
// jump to the next iteration if there was a problem
if(flag != 0) {
continue;
}
number = getNonlinearityCoeffs2(device_ids[i],nonlinearityCoeffs);
/* Close the device */
// printf("\tAttempting to close:\n");
sbapi_close_device(device_ids[i], &error);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
}
free(device_ids);
// printf("Finished testing.\n");
/* Clean up memory allocated by the driver */
sbapi_shutdown();
return number;
}//
//<2F><><EFBFBD><EFBFBD>ֵ<EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><D0A3>ϵ<EFBFBD><CFB5><EFBFBD>ĸ<EFBFBD><C4B8><EFBFBD>
int getNonlinearityCoeffs2(long deviceID, double * nonlinearityCoeffs)
{
int error = 0;
int number_of_nonlinearity_coeff_features;
long *nonlinearity_coeff_feature_ids = 0;
double buffer[10];
int i;
int length = 0;
// printf("\n\tTesting nonlinearity coefficient features:\n");
// printf("\t\tGetting number of nonlinearity coefficient features:\n");
number_of_nonlinearity_coeff_features =
sbapi_get_number_of_nonlinearity_coeffs_features(deviceID, &error);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
if(0 == number_of_nonlinearity_coeff_features) {
printf("\tNo nonlinearity coefficient capabilities found.\n");
return 0;
}
nonlinearity_coeff_feature_ids =
(long *)calloc(number_of_nonlinearity_coeff_features, sizeof(long));
// printf("\t\tGetting nonlinearity coefficient feature IDs...\n");
number_of_nonlinearity_coeff_features = sbapi_get_nonlinearity_coeffs_features(
deviceID, &error, nonlinearity_coeff_feature_ids,
number_of_nonlinearity_coeff_features);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
for(i = 0; i < number_of_nonlinearity_coeff_features; i++)
{
// printf("\t\t%d: Testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, deviceID, nonlinearity_coeff_feature_ids[i]);
// printf("\t\t\tAttempting to get nonlinearity coefficients...\n");
memset(nonlinearityCoeffs, (int)0, 20);//----------------------------------------------------------------------------
length = sbapi_nonlinearity_coeffs_get(deviceID,
nonlinearity_coeff_feature_ids[i], &error, nonlinearityCoeffs, 20);
// printf("\t\t\t\tResult is %d [%s]\n", length, sbapi_get_error_string(error));
if(0 == error && length > 0) {
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[0]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[1]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[2]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[3]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[4]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[5]);
// printf("\t\t\t\tFirst calibration term: %1.2e\n", nonlinearityCoeffs[6]);
}
// printf("\t\t%d: Finished testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, deviceID, nonlinearity_coeff_feature_ids[i]);
}
free(nonlinearity_coeff_feature_ids);
// printf("\tFinished testing nonlinearity coefficient capabilities.\n");
return length;
}

View File

@ -1,8 +1,11 @@
#include "Header_Files/oceanOpticsFiberImager.h" #include "Header_Files/oceanOpticsFiberImager.h"
OceanOpticsFiberImager::OceanOpticsFiberImager() OceanOpticsFiberImager::OceanOpticsFiberImager(double * nonlinearityCoeffs, int numberOfCoeffs)
{ {
m_FiberSpectrometer = NULL; m_FiberSpectrometer = NULL;
m_nonlinearityCoeffs = nonlinearityCoeffs;
m_iNumberOfNonlinearityCoeffs = numberOfCoeffs;
} }
OceanOpticsFiberImager::~OceanOpticsFiberImager() OceanOpticsFiberImager::~OceanOpticsFiberImager()
@ -18,15 +21,15 @@ void OceanOpticsFiberImager::connectFiberSpectrometer(QString& SN, QString& pixe
m_FiberSpectrometer->Initialize(); m_FiberSpectrometer->Initialize();
DeviceInfo deviceInfo; getDeviceInfo(m_deviceInfo);
DeviceAttribute deviceAttribute; // m_FiberSpectrometer->GetDeviceInfo(m_deviceInfo);
m_FiberSpectrometer->GetDeviceInfo(deviceInfo); getDeviceAttribute(m_deviceAttribute);
m_FiberSpectrometer->GetDeviceAttribute(deviceAttribute); // m_FiberSpectrometer->GetDeviceAttribute(m_deviceAttribute);
SN = QString::fromStdString(deviceInfo.strSN); SN = QString::fromStdString(m_deviceInfo.strSN);
pixelCount = QString::number(deviceAttribute.iPixels); pixelCount = QString::number(m_deviceAttribute.iPixels);
wavelengthInfo = QString::number(deviceAttribute.fWaveLengthInNM[0]) + "--" + QString::number(deviceAttribute.fWaveLengthInNM[deviceAttribute.iPixels - 1]); wavelengthInfo = QString::number(m_deviceAttribute.fWaveLengthInNM[0]) + "--" + QString::number(m_deviceAttribute.fWaveLengthInNM[m_deviceAttribute.iPixels - 1]);
m_FiberSpectrometer->SetDeviceTemperature(-10); m_FiberSpectrometer->SetDeviceTemperature(-10);
@ -34,11 +37,11 @@ void OceanOpticsFiberImager::connectFiberSpectrometer(QString& SN, QString& pixe
//<2F><><EFBFBD><EFBFBD>dnֵ<6E><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD>أ<EFBFBD> //<2F><><EFBFBD><EFBFBD>dnֵ<6E><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD>أ<EFBFBD>
string qepro = "QEP"; string qepro = "QEP";
string flame = "FLMS"; string flame = "FLMS";
if (deviceInfo.strSN.find(qepro) != string::npos) if (m_deviceInfo.strSN.find(qepro) != string::npos)
{ {
m_MaxValueOfFiberSpectrometer = 200000; m_MaxValueOfFiberSpectrometer = 200000;
} }
else if (deviceInfo.strSN.find(flame) != string::npos) else if (m_deviceInfo.strSN.find(flame) != string::npos)
{ {
m_MaxValueOfFiberSpectrometer = 65535; m_MaxValueOfFiberSpectrometer = 65535;
} }
@ -81,6 +84,32 @@ void OceanOpticsFiberImager::getDeviceTemperature(float &fTemperature)
void OceanOpticsFiberImager::singleShot(DataFrame &dfData) void OceanOpticsFiberImager::singleShot(DataFrame &dfData)
{ {
m_FiberSpectrometer->SingleShot(dfData); m_FiberSpectrometer->SingleShot(dfData);
if(m_iNumberOfNonlinearityCoeffs==0)//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><D0A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ0<CEAA><30><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ô<EFBFBD>Ͳ<EFBFBD><CDB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><D0A3>
{
return;
}
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><D0A3>
for (int i = 0; i < m_deviceAttribute.iPixels; i++)
{
dfData.lData[i] = dfData.lData[i] / (m_nonlinearityCoeffs[0]
+ m_nonlinearityCoeffs[1] * dfData.lData[i]
+ m_nonlinearityCoeffs[2] * pow(dfData.lData[i], 2)
+ m_nonlinearityCoeffs[3] * pow(dfData.lData[i], 3)
+ m_nonlinearityCoeffs[4] * pow(dfData.lData[i], 4)
+ m_nonlinearityCoeffs[5] * pow(dfData.lData[i], 5)
+ m_nonlinearityCoeffs[6] * pow(dfData.lData[i], 6)
+ m_nonlinearityCoeffs[7] * pow(dfData.lData[i], 7)
);
}
}
void OceanOpticsFiberImager::getNonlinearityCoeffs(coeffsFrame &coeffs)
{
printf("This is OceanOpticsFiberImager.\n");
m_FiberSpectrometer->test_nonlinearity_coeffs_feature();
} }
void OceanOpticsFiberImager::recordDark(QString path) void OceanOpticsFiberImager::recordDark(QString path)