(1)将atp光谱仪的控制类更新到卓哥最新版,解决连接atp的问题;

(2)将读取OceanOptics的非线性校正文件  集成到定标程序中;
This commit is contained in:
2022-04-21 14:00:45 +08:00
committed by xin
parent b2225cea5b
commit aaeba1360e
11 changed files with 431 additions and 128 deletions

View File

@ -3,6 +3,7 @@
//////////////////////////////////////////////////////////////////////////
#pragma once
//#include "pch.h"
#include "ZZ_Types.h"
#include "ZZ_Math.h"
#include <QSerialPort>
@ -66,6 +67,8 @@ public:
//<2F>Զ<EFBFBD><D4B6>ع<EFBFBD>
int PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime);
private:
int SetAvgTimes(int iTimes = 1);
#ifdef _DEBUG
public:

View File

@ -30,6 +30,14 @@ public:
virtual void singleShot(DataFrame &dfData) = 0;
// typedef struct coeffs
// {
// ZZ_U32 coeffsCounter;
// double coeffs[100];
// }coeffsFrame;
virtual void getNonlinearityCoeffs(coeffsFrame &coeffs) = 0;
// ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number) = 0;
DataFrame m_IntegratingSphereData;

View File

@ -30,6 +30,12 @@ namespace ZZ_MISCDEF
double dTimes = 0;
}DataFrame;
typedef struct coeffs//tc<74><63><EFBFBD><EFBFBD>-----------------------
{
ZZ_U32 coeffsCounter;
double coeffs[100];
}coeffsFrame;
typedef struct tagDeviceInfo
{
std::string strPN;

View File

@ -31,6 +31,8 @@ public:
void singleShot(DataFrame &dfData);
void getNonlinearityCoeffs(coeffsFrame &coeffs);
ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number);
// DataFrame m_IntegratingSphereData;

View File

@ -11,6 +11,7 @@
#include "IrisFiberSpectrometerBase.h"
#include "api/seabreezeapi/SeaBreezeAPI.h"
#include "api/seabreezeapi/NonlinearityCoeffsFeatureAdapter.h"
using namespace std;
@ -53,6 +54,7 @@ public:
//tc
static const char* get_error_string(int error);
void test_nonlinearity_coeffs_feature();
private:
int m_iSpectralmeterHandle;
DeviceInfo m_deviceInfo;

View File

@ -31,6 +31,8 @@ public:
void singleShot(DataFrame &dfData);
void getNonlinearityCoeffs(coeffsFrame &coeffs);
ZZ_S32 GetMaxValue(ZZ_S32 * dark, int number);
// DataFrame m_IntegratingSphereData;

View File

@ -9,7 +9,7 @@ ZZ_ATPControl_Serial_Qt::ZZ_ATPControl_Serial_Qt(QObject* parent /*= nullptr*/)
//emit SignalInit_Self();
}
ZZ_ATPControl_Serial_Qt::~ZZ_ATPControl_Serial_Qt()
ZZ_ATPControl_Serial_Qt::~ZZ_ATPControl_Serial_Qt()//
{
if (m_pSerialPort != NULL)
{
@ -72,7 +72,7 @@ int ZZ_ATPControl_Serial_Qt::Initialize(bool bIsUSBMode, std::string ucPortNumbe
GetDeviceInfo(m_diDeviceInfo);
GetExposureTime_Init();
SetAvgTimes(1);
std::string::size_type szPostion = m_diDeviceInfo.strSN.find(strDeviceName);
if (szPostion == std::string::npos)
@ -196,15 +196,15 @@ int ZZ_ATPControl_Serial_Qt::GetDeviceAttribute(DeviceAttribute &Attr)
}
m_daDeviceAttr.iMaxIntegrationTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
///
int iTempExpTime = 0;
GetExposureTime(iTempExpTime);
iRes = SetExposureTime(10);
iRes = SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Call SetExposureTime error.Exit Code:2";
return 2;
//return 2;
}
iRes = SingleShot(m_daDeviceAttr.iPixels);
if (iRes != 0)
@ -214,8 +214,7 @@ int ZZ_ATPControl_Serial_Qt::GetDeviceAttribute(DeviceAttribute &Attr)
}
SetExposureTime(iTempExpTime);
///
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_WAVELENGTH_CALIBRATION_COEF);
@ -257,6 +256,36 @@ int ZZ_ATPControl_Serial_Qt::SetDeviceTemperature(float fTemperature)
return 0;
}
int ZZ_ATPControl_Serial_Qt::SetAvgTimes(int iTimes /*= 1*/)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(SET_AVERAGE_NUMBER);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:3";
return 3;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::GetExposureTime_Init()
{
QByteArray qbSend, qbRecv;
@ -326,7 +355,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData(QByteArray &qbData)
int iCounter = 0;
while (qbData.size() < 4)
{
m_pSerialPort->waitForReadyRead(1000);
m_pSerialPort->waitForReadyRead(5000);
QByteArray qbTemp = m_pSerialPort->readAll();
qbData.append(qbTemp);
@ -335,7 +364,6 @@ int ZZ_ATPControl_Serial_Qt::RecvData(QByteArray &qbData)
qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1;
}
iCounter++;
}
@ -397,7 +425,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if (iCounter > 6)
{
qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size();
qDebug() << "Err:RecvData_ShortLag Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1;
}
iCounter++;
@ -405,7 +433,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if ((ZZ_U8)qbData[0] != (ZZ_U8)0xaa || (ZZ_U8)qbData[1] != (ZZ_U8)0x55)
{
qDebug() << "Err:RecvData Failed,Wrong Header.Exit Code:2" << qbData.size();
qDebug() << "Err:RecvData_ShortLag Failed,Wrong Header.Exit Code:2" << qbData.size();
return 2;
}
@ -418,7 +446,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
if (iCounter > 6)
{
qDebug() << "Err:RecvData Failed,Incomplete Data.Exit Code:3" << qbData.size();
qDebug() << "Err:RecvData_ShortLag Failed,Incomplete Data.Exit Code:3" << qbData.size();
return 3;
}
iCounter++;
@ -438,7 +466,7 @@ int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
ZZ_U8 ucTemp = qbData[qbData.size() - 1];
if ((ZZ_U8)usCheckSum != ucTemp)
{
qDebug() << "Err:RecvData Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp;
qDebug() << "Err:RecvData_ShortLag Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp;
//qbData.clear();
//return 4;
return 0;
@ -467,16 +495,9 @@ int ZZ_ATPControl_Serial_Qt::Init_Self()
int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime)
{
int m_iThreadID=0;
// qDebug() << "--------------------------Starting PerformAutoExposure" << " Thread ID:" << m_iThreadID;
using namespace ZZ_MATH;
// float fPredictedExposureTime;
int iDeviceDepth = 65535;
// qDebug() << "MAX---Min" << fMaxScaleFactor << "---" << fMinScaleFactor << " Thread ID:" << m_iThreadID;
bool bFlagIsOverTrying = false;
bool bFlagIsLowerMinExposureTime = false;
bool bFlagIsOverMaxExposureTime = false;
@ -486,16 +507,15 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bool bIsValueOverflow = false;
bool bIsLastValueOverflow = false;
int iExposureTime = 0;
float fExposureTime = 0;
float fTempExposureTime = 0;
double fLastExposureTime = 0.1;
int iRepeatCount = 0;
//int iRes = m_pFSCtrl->SetExposureTime(1000);//need change to load from files
int iRes = 0;
int iRes = SetExposureTime(2000);//need change to load from files
if (iRes != 0)
{
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1" << " Thread ID:" << m_iThreadID;
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1";
return 1;
}
@ -509,49 +529,42 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bFlagIsOverTrying = true;
break;
}
//m_pFSCtrl->SetExposureTime(5000);
GetExposureTime(iExposureTime);
// qDebug() << "Current ExpTime:" << iExposureTime << " Thread ID:" << m_iThreadID;
//m_pFSCtrl->SetExposureTime(2500);
//fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS;
fTempExposureTime = iExposureTime;
fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS;
fTempExposureTime = fExposureTime;
iRes = SingleShot(dfTemp);
//iRes = m_pFSCtrl->SingleShot(dfTemp);
if (iRes != 0)
{
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2" << " Thread ID:" << m_iThreadID;
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2";
return 2;
}
HeapSort(dfTemp.lData, m_daDeviceAttr.iPixels);
double dSum = 0;
int iCount = m_daDeviceAttr.iPixels / 200;
int iCount = m_daDeviceAttr.iPixels / 100;
for (int i = 0; i < iCount; i++)
{
dSum += dfTemp.lData[i];
}
double dTemp = dSum / iCount;
// qDebug() << "Avg " << dTemp << " Thread ID:" << m_iThreadID;
if (dTemp >= iDeviceDepth * 0.99)
{
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
iExposureTime = iExposureTime / 2;
fExposureTime = fExposureTime / 2;
}
}
else if (iDeviceDepth * fMaxScaleFactor >= dTemp && dTemp >= iDeviceDepth * fMinScaleFactor)
{
// qDebug() << "trace bFlagIsAutoExposureOK =1 " << iExposureTime << " Thread ID:" << m_iThreadID;
bFlagIsAutoExposureOK = 1;
}
else if (dTemp > iDeviceDepth * fMaxScaleFactor)
@ -559,11 +572,11 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
iExposureTime = iExposureTime * 3 / 4;
fExposureTime = fExposureTime * 3 / 4;
}
}
else if (dTemp < iDeviceDepth * fMinScaleFactor)
@ -571,15 +584,15 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bIsValueOverflow = false;
if (bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
double dFactor;
dFactor = dTemp / (iDeviceDepth * fMaxScaleFactor);
iExposureTime = (float)(iExposureTime / dFactor);
fExposureTime = (float)(fExposureTime / dFactor);
}
if (/*fExposureTime > 100 || */iExposureTime < 10)
if (/*fExposureTime > 100 || */fExposureTime < 10)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
@ -589,41 +602,29 @@ int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fM
bIsLastValueOverflow = bIsValueOverflow;
fLastExposureTime = fTempExposureTime;
if (iExposureTime > 65000)
if (fExposureTime > 13000)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
float fPredictedExposureTime = 65000;
iRes = SetExposureTime(65000);
fPredictedExposureTime = 13000;
iRes = SetExposureTime(13000);
if (iRes != 0)
{
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3" << " Thread ID:" << m_iThreadID;
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3";
return 3;
}
else
{
//qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to 30sec";
// qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to " << m_daDeviceAttr.iMaxIntegrationTimeInMS << "MS" << " Thread ID:" << m_iThreadID;
}
bFlagIsOverMaxExposureTime = true;
break;
}
iRes = SetExposureTime((int)iExposureTime);
iRes = SetExposureTime((int)fExposureTime);
if (iRes != 0)
{
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4" << " Thread ID:" << m_iThreadID;
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4";
return 3;
}
else
{
qDebug() << "Success:PerformAutoExposure. Value" << iExposureTime << " Thread ID:" << m_iThreadID;
}
}
fPredictedExposureTime = iExposureTime;
// qDebug() << "--------------------------Stop PerformAutoExposure" << " Thread ID:" << m_iThreadID;
//emit SignalAcqFinished(m_iThreadID, 1);
fPredictedExposureTime = fExposureTime;
return 0;
}
@ -717,9 +718,8 @@ int ZZ_ATPControl_Serial_Qt::SingleShot(DataFrame &dfData)
qbSend.resize(3);
// qbSend[1] = 0x00;
// qbSend[2] = 0x01;
int iTemp=m_iExposureTime;
qbSend[1] = iTemp >> 8;;
qbSend[2] = iTemp & 0xFF;
qbSend[1] = m_iExposureTime >> 8;;
qbSend[2] = m_iExposureTime & 0xFF;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
@ -762,11 +762,9 @@ int ZZ_ATPControl_Serial_Qt::SingleShot(DataFrame &dfData)
// dfData.lData[i] = usData[i];
// }
}
float fTemp;
GetDeviceTemperature(fTemp);
dfData.usExposureTimeInMS = m_iExposureTime;
dfData.fTemperature = fTemp;
return 0;

View File

@ -18,13 +18,13 @@ void ATPFiberImager::connectFiberSpectrometer(QString& SN, QString& pixelCount,
m_FiberSpectrometer = new ZZ_ATPControl_Serial_Qt();
m_FiberSpectrometer->Initialize(false, mUcPortNumber, "ocean_optics");
m_FiberSpectrometer->Initialize(false, mUcPortNumber, "OPTOSKY");
DeviceInfo deviceInfo;//
DeviceAttribute deviceAttribute;
m_FiberSpectrometer->GetDeviceInfo(deviceInfo);
m_FiberSpectrometer->GetDeviceAttribute(deviceAttribute);
m_FiberSpectrometer->GetDeviceAttribute(deviceAttribute);//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
SN = QString::fromStdString(deviceInfo.strSN);
pixelCount = QString::number(deviceAttribute.iPixels);
@ -86,6 +86,11 @@ void ATPFiberImager::singleShot(DataFrame &dfData)
m_FiberSpectrometer->SingleShot(dfData);
}
void ATPFiberImager::getNonlinearityCoeffs(coeffsFrame &coeffs)
{
printf("This is ATPFiberImager.\n");
}
void ATPFiberImager::recordDark(QString path)
{
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ

View File

@ -516,6 +516,77 @@ const char* OceanOptics_lib::get_error_string(int error)
return buffer;
}
void OceanOptics_lib::test_nonlinearity_coeffs_feature()
{
using namespace seabreeze;
using namespace seabreeze::api;
using namespace std;
NonlinearityCoeffsFeatureAdapter tmp();
// int error = 0;
// int number_of_nonlinearity_coeff_features;
// long *nonlinearity_coeff_feature_ids = 0;
// double buffer[10];
// int i;
// int length;
//
// printf("\n\tTesting nonlinearity coefficient features:\n");
//
// printf("\t\tGetting number of nonlinearity coefficient features:\n");
// number_of_nonlinearity_coeff_features =
// sbapi_get_number_of_nonlinearity_coeffs_features(m_iSpectralmeterHandle, &error);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
//
// if(0 == number_of_nonlinearity_coeff_features) {
// printf("\tNo nonlinearity coefficient capabilities found.\n");
//// tallyUnsupportedFeatures(unsupportedFeatureCount);
//
// return;
// }
//
// nonlinearity_coeff_feature_ids =
// (long *)calloc(number_of_nonlinearity_coeff_features, sizeof(long));
// printf("\t\tGetting nonlinearity coefficient feature IDs...\n");
// number_of_nonlinearity_coeff_features = sbapi_get_nonlinearity_coeffs_features(
// m_iSpectralmeterHandle, &error, nonlinearity_coeff_feature_ids,
// number_of_nonlinearity_coeff_features);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
//
// for(i = 0; i < number_of_nonlinearity_coeff_features; i++) {
// printf("\t\t%d: Testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, m_iSpectralmeterHandle, nonlinearity_coeff_feature_ids[i]);
//
// printf("\t\t\tAttempting to get nonlinearity coefficients...\n");
// memset(buffer, (int)0, sizeof(buffer));
// length = sbapi_nonlinearity_coeffs_get(m_iSpectralmeterHandle,
// nonlinearity_coeff_feature_ids[i], &error, buffer, 10);
// printf("\t\t\t\tResult is %d [%s]\n", length, sbapi_get_error_string(error));
//
// if(0 == error && length > 0) {
// printf("\t\t\t\tFirst calibration term: %1.2e\n", buffer[0]);
// }
//
// printf("\t\t%d: Finished testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, m_iSpectralmeterHandle, nonlinearity_coeff_feature_ids[i]);
// }
// free(nonlinearity_coeff_feature_ids);
//
// printf("\tFinished testing nonlinearity coefficient capabilities.\n");
}
string OceanOptics_lib::GetDeviceType(int index)
{
char type[16];

View File

@ -47,6 +47,9 @@ void logout(QString str);
void createDirectory(QString fullPath);
bool isFileExist(QString fullFileName);
int getNonlinearityCoeffs2(long deviceID, double * coeffs);
int getNonlinearityCoeffs1(double * coeffs);
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
@ -88,16 +91,17 @@ int main(int argc, char *argv[])
switch (query.deviceType)
{
case OPTOSKY:
m_FiberSpectrometer = new ATPFiberImager(false,query.serialPort.toStdString(),"ocean_optics");
m_FiberSpectrometer = new ATPFiberImager(false,query.serialPort.toStdString(),"OPTOSKY");
break;
case OceanOptics:
m_FiberSpectrometer = new OceanOpticsFiberImager();
m_FiberSpectrometer = new OceanOpticsFiberImager();//
break;
case UnknownDevice:
parser.showHelp();
Q_UNREACHABLE();
}
//<2F><><EFBFBD>ӹ<EFBFBD><D3B9><EFBFBD><EFBFBD><EFBFBD>
QString message;
QString SN;
@ -106,66 +110,115 @@ int main(int argc, char *argv[])
logout("<br><b style=\"color:red\">Connectting the fiber spectrometer!</b>");
m_FiberSpectrometer->connectFiberSpectrometer(SN, pixelCount, wavelengthInfo);
//<2F>Զ<EFBFBD><D4B6>ع<EFBFBD>
logout("<br><b style=\"color:red\">AutoExpose!</b>");
m_FiberSpectrometer->autoExpose();
int iExposureTime;
m_FiberSpectrometer->getExposureTime(iExposureTime);
message="<br><b style=\"color:red\">ExposureTime: " + QString::number(iExposureTime) + "</b>";
logout(message);
//<2F><><EFBFBD><EFBFBD>sleep<65><70><EFBFBD>ȴ<EFBFBD><C8B4>رտ<D8B1><D5BF><EFBFBD>
message="<br><b style=\"color:red\">Please close the lamp in " + QString::number(query.sleepTimeinSecond) + "s!</b>";
logout(message);
QThread::sleep(query.sleepTimeinSecond);
//<2F>ɼ<EFBFBD><C9BC><EFBFBD>֡
logout("<br><b style=\"color:red\">Record dark frame!</b>");
m_FiberSpectrometer->recordDark(query.calFileOutputDirectory);
//<2F><><EFBFBD><EFBFBD>sleep<EFBFBD><EFBFBD><EFBFBD>ȴ<EFBFBD><EFBFBD>򿪿<EFBFBD><EFBFBD><EFBFBD>
message="<br><b style=\"color:red\">Please open the lamp in " + QString::number(query.sleepTimeinSecond) + "s!</b>";
logout(message);
QThread::sleep(query.sleepTimeinSecond);
//<2F>ɼ<EFBFBD><C9BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
logout("<br><b style=\"color:red\">Record integrating sphere frame!</b>");
m_FiberSpectrometer->recordTarget(query.averageTimes, query.calFileOutputDirectory);
//׼<><D7BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD>
logout("<br><b style=\"color:red\">readAndResample_StandardLightFile!</b>");
// //<2F>Զ<EFBFBD><EFBFBD>ع<EFBFBD>
// logout("<br><b style=\"color:red\">AutoExpose!</b>");
// m_FiberSpectrometer->autoExpose();
//
// int iExposureTime;
// m_FiberSpectrometer->getExposureTime(iExposureTime);
//
// message="<br><b style=\"color:red\">ExposureTime: " + QString::number(iExposureTime) + "</b>";
// logout(message);
//
// //<2F><><EFBFBD><EFBFBD>sleep<65><70><EFBFBD>ȴ<EFBFBD><C8B4>رտ<D8B1><D5BF><EFBFBD>
// message="<br><b style=\"color:red\">Please close the lamp in " + QString::number(query.sleepTimeinSecond) + "s!</b>";
// logout(message);
// QThread::sleep(query.sleepTimeinSecond);
//
// //<2F>ɼ<EFBFBD><C9BC><EFBFBD>֡
// logout("<br><b style=\"color:red\">Record dark frame!</b>");
// m_FiberSpectrometer->recordDark(query.calFileOutputDirectory);
//
//
// //<2F><><EFBFBD><EFBFBD>sleep<65><70><EFBFBD>ȴ<EFBFBD><C8B4>򿪿<EFBFBD><F2BFAABF><EFBFBD>
// message="<br><b style=\"color:red\">Please open the lamp in " + QString::number(query.sleepTimeinSecond) + "s!</b>";
// logout(message);
// QThread::sleep(query.sleepTimeinSecond);
//
// //<2F>ɼ<EFBFBD><C9BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// logout("<br><b style=\"color:red\">Record integrating sphere frame!</b>");
// m_FiberSpectrometer->recordTarget(query.averageTimes, query.calFileOutputDirectory);
//
// //׼<><D7BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD>
// logout("<br><b style=\"color:red\">readAndResample_StandardLightFile!</b>");
DeviceAttribute deviceAttribute;
DeviceInfo deviceInfo;
m_FiberSpectrometer->getDeviceAttribute(deviceAttribute);
m_FiberSpectrometer->getDeviceInfo(deviceInfo);
//
// CalibrationAlgorithm * m_CalibrationAlgorithm = new CalibrationAlgorithm();
// m_CalibrationAlgorithm->readAndResample_StandardLightFile(query.standardLightFilePath,query.integratingSphereDetectorValue, deviceAttribute, deviceInfo);
//
// //<2F><><EFBFBD>ɷ<EFBFBD><C9B7><EFBFBD><E4B6A8><EFBFBD>ļ<EFBFBD>
// if (query.calFileOutputName.isEmpty())//query->calFileOutputName==""
// {
// QDateTime curDateTime = QDateTime::currentDateTime();
// QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
// QString calFileName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + ".dat");
//
// query.calFileOutputName=calFileName;
// }
// logout("<br><b style=\"color:red\">Produce calibration file!</b>");
// m_CalibrationAlgorithm->produceCalfile(query.calFileOutputName, deviceAttribute, m_FiberSpectrometer->m_IntegratingSphereData, m_FiberSpectrometer->m_DarkData);
//
// //<2F><><EFBFBD>Ʒ<EFBFBD><C6B7><EFBFBD><E4B6A8><EFBFBD>ļ<EFBFBD>
// QDateTime curDateTime = QDateTime::currentDateTime();
// QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
// QString destName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + "_" +QString::number(query.position) + ".cal");
// copyFileToPath(query.calFileOutputName,destName,true);
CalibrationAlgorithm * m_CalibrationAlgorithm = new CalibrationAlgorithm();
m_CalibrationAlgorithm->readAndResample_StandardLightFile(query.standardLightFilePath,query.integratingSphereDetectorValue, deviceAttribute, deviceInfo);
//<2F><><EFBFBD>ɷ<EFBFBD><C9B7><EFBFBD><E4B6A8><EFBFBD>ļ<EFBFBD>
if (query.calFileOutputName.isEmpty())//query->calFileOutputName==""
//<2F>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD><D1A7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڱ<EFBFBD><DAB1><EFBFBD>isOcean<61><6E>
auto * p_C = dynamic_cast<OceanOpticsFiberImager *>(m_FiberSpectrometer);
bool isOcean = false;//
if (p_C != nullptr)
{
QDateTime curDateTime = QDateTime::currentDateTime();
QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
QString calFileName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + ".dat");
// cout << "Match!!" << endl;
isOcean=true;
query.calFileOutputName=calFileName;
// coeffsFrame tmp;
// m_FiberSpectrometer->getNonlinearityCoeffs(tmp);
}
else
{
cout << "not OceanOpticsFiberImager!!" << endl;
}
logout("<br><b style=\"color:red\">Produce calibration file!</b>");
m_CalibrationAlgorithm->produceCalfile(query.calFileOutputName, deviceAttribute, m_FiberSpectrometer->m_IntegratingSphereData, m_FiberSpectrometer->m_DarkData);
//<2F><><EFBFBD>Ʒ<EFBFBD><C6B7><EFBFBD><E4B6A8><EFBFBD>ļ<EFBFBD>
QDateTime curDateTime = QDateTime::currentDateTime();
QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
QString destName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + "_" +QString::number(query.position) + ".cal");
copyFileToPath(query.calFileOutputName,destName,true);
//<2F>Ͽ<EFBFBD><CFBF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
m_FiberSpectrometer->disconnectFiberSpectrometer();
//return a.exec();
//ʹ<><CAB9>sbapi<70><69>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѧ<EFBFBD><D1A7><EFBFBD><EFBFBD><EFBFBD>ķ<EFBFBD><C4B7><EFBFBD><EFBFBD>Զ<EFBFBD><D4B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (isOcean)
{
double * coeffs = new double[100];
int numberOfCoeffs = getNonlinearityCoeffs1(coeffs);
QDateTime curDateTime = QDateTime::currentDateTime();
QString currentTime = curDateTime.toString("yyyy_MM_dd_hh_mm_ss");
QString nonlinearityCoeffsName = QDir::cleanPath(query.calFileOutputDirectory + QDir::separator() + currentTime + "_" + QString::fromStdString(deviceInfo.strSN) + ".nonLinear");
// for (int i = 0; i < numberOfCoeffs; ++i)
// {
// printf("\n");
//
// printf("nonlinearityCoeffs(<28><>%d<><64>): %1.2e\n",i , coeffs[i]);
//
// printf("\n");
// }
std::ofstream outfile(nonlinearityCoeffsName.toStdString().c_str());
for (int i = 0; i < numberOfCoeffs; i++)
{
outfile << coeffs[i] << std::endl;
}
outfile.close();
free(coeffs);
}
}
CommandLineParseResult parseCommandLine2(QCommandLineParser &parser, TcQuery *query, QString *errorMessage)
@ -485,3 +538,149 @@ bool isFileExist(QString fullFileName)
}
return false;
}
int getNonlinearityCoeffs1(double * coeffs)
{
int number_of_devices;
long *device_ids;
int i;
int test_index;
int flag;
int error = 0;
char nameBuffer[80];
/* Give the driver a chance to initialize itself */
sbapi_initialize();
// printf("Probing for devices...\n"); fflush(stdout);
sbapi_probe_devices();
//#define RS232_TEST
#ifdef RS232_TEST
printf("Adding an STS at 9600 baud...\n");
/* Uncomment for Linux */
//sbapi_add_RS232_device_location("STS", "/dev/ttyS0", 9600);
//sbapi_add_RS232_device_location("STS", "/dev/ttyUSB0", 9600);
/* Uncomment for Windows */
//sbapi_add_RS232_device_location("STS", "COM1", 9600);
/* Uncomment for e.g. USB-RS232 adapter under OSX */
//sbapi_add_RS232_device_location("STS", "/dev/tty.KeySerial1", 9600);
//sbapi_add_RS232_device_location("STS", "/dev/tty.usbserial", 9600);
#endif
/* This shows how to add network devices (note that most use TCP/IP) */
//sbapi_add_TCPIPv4_device_location("Jaz", "192.168.1.150", 7654);
//sbapi_add_TCPIPv4_device_location("Blaze", "192.168.1.151", 57357);
// printf("Getting device count...\n"); fflush(stdout);
number_of_devices = sbapi_get_number_of_device_ids();
// printf("Device count is %d\n", number_of_devices);
if(0 == number_of_devices) {
return 0;
}
// printf("Getting device IDs...\n");
device_ids = (long *)calloc(number_of_devices, sizeof(long));
number_of_devices = sbapi_get_device_ids(device_ids, number_of_devices);
// printf("Got %d device ID%s.\n", number_of_devices, number_of_devices == 1 ? "" : "s");
int number;
for(i = 0; i < number_of_devices; i++) {
// printf("%d: Device 0x%02lX:\n", i, device_ids[i]);
// printf("\tGetting device type...\n");
flag = sbapi_get_device_type(device_ids[i], &error, nameBuffer, 79);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
if(flag > 0) {
// printf("\tDevice type: [%s]\n", nameBuffer);
}
/* Open the device */
// printf("\tAttempting to open:\n");
flag = sbapi_open_device(device_ids[i], &error);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
// jump to the next iteration if there was a problem
if(flag != 0) {
continue;
}
number = getNonlinearityCoeffs2(device_ids[i],coeffs);
/* Close the device */
// printf("\tAttempting to close:\n");
sbapi_close_device(device_ids[i], &error);
// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
}
free(device_ids);
// printf("Finished testing.\n");
/* Clean up memory allocated by the driver */
sbapi_shutdown();
return number;
}
//<2F><><EFBFBD><EFBFBD>ֵ<EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><D0A3>ϵ<EFBFBD><CFB5><EFBFBD>ĸ<EFBFBD><C4B8><EFBFBD>
int getNonlinearityCoeffs2(long deviceID, double * coeffs)
{
int error = 0;
int number_of_nonlinearity_coeff_features;
long *nonlinearity_coeff_feature_ids = 0;
double buffer[10];
int i;
int length = 0;
// printf("\n\tTesting nonlinearity coefficient features:\n");
// printf("\t\tGetting number of nonlinearity coefficient features:\n");
number_of_nonlinearity_coeff_features =
sbapi_get_number_of_nonlinearity_coeffs_features(deviceID, &error);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
if(0 == number_of_nonlinearity_coeff_features) {
printf("\tNo nonlinearity coefficient capabilities found.\n");
return 0;
}
nonlinearity_coeff_feature_ids =
(long *)calloc(number_of_nonlinearity_coeff_features, sizeof(long));
// printf("\t\tGetting nonlinearity coefficient feature IDs...\n");
number_of_nonlinearity_coeff_features = sbapi_get_nonlinearity_coeffs_features(
deviceID, &error, nonlinearity_coeff_feature_ids,
number_of_nonlinearity_coeff_features);
// printf("\t\t\tResult is %d [%s]\n", number_of_nonlinearity_coeff_features,
// sbapi_get_error_string(error));
for(i = 0; i < number_of_nonlinearity_coeff_features; i++)
{
// printf("\t\t%d: Testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, deviceID, nonlinearity_coeff_feature_ids[i]);
// printf("\t\t\tAttempting to get nonlinearity coefficients...\n");
memset(coeffs, (int)0, 20);//----------------------------------------------------------------------------
length = sbapi_nonlinearity_coeffs_get(deviceID,
nonlinearity_coeff_feature_ids[i], &error, coeffs, 20);
// printf("\t\t\t\tResult is %d [%s]\n", length, sbapi_get_error_string(error));
if(0 == error && length > 0) {
// printf("\t\t\t\tFirst calibration term: %1.2e\n", coeffs[0]);
}
// printf("\t\t%d: Finished testing device 0x%02lX, nonlinearity coeffs 0x%02lX\n",
// i, deviceID, nonlinearity_coeff_feature_ids[i]);
}
free(nonlinearity_coeff_feature_ids);
// printf("\tFinished testing nonlinearity coefficient capabilities.\n");
return length;
}

View File

@ -83,6 +83,13 @@ void OceanOpticsFiberImager::singleShot(DataFrame &dfData)
m_FiberSpectrometer->SingleShot(dfData);
}
void OceanOpticsFiberImager::getNonlinearityCoeffs(coeffsFrame &coeffs)
{
printf("This is OceanOpticsFiberImager.\n");
m_FiberSpectrometer->test_nonlinearity_coeffs_feature();
}
void OceanOpticsFiberImager::recordDark(QString path)
{
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ