Files
TowerOptoSifAndSpectral/source/CaptureThread/AbstractFSController.cpp
zhangzhuo b2225cea5b 重大更新
1.添加了对双通道光闸系统的支持。
2.针对QEPro系列硬件添加了非线性矫正
3.进行了完整的实际采集测试,通过。
4.优化统一了ATP基类内置自动曝光函数。
2025-03-10 10:02:51 +08:00

514 lines
13 KiB
C++

#include "AbstractFSController.h"
#include "ZZ_Math_HDRONLY.h"
#include <math.h>
CAbstractFSController::CAbstractFSController(QObject* parent /*= nullptr*/)
{
iFlagInit = 0;
m_pFSCtrl = NULL;
m_iThreadID = -1;
m_vecDataFrameDark.clear();
m_vecDataFrameSignal.clear();
m_qstrCalFilePath = "/home/data/Cal";
m_vecNonLinearCalP.clear();
}
CAbstractFSController::~CAbstractFSController()
{
if (m_pFSCtrl!= 0 )
{
delete m_pFSCtrl;
}
}
int CAbstractFSController::SetRunParas(int iThreadID, FSInfo fsInfo)
{
connect(this, &CAbstractFSController::SignalInit_Self, this, &CAbstractFSController::InitializeFSControl);
m_iThreadID = iThreadID;
m_fsInfo = fsInfo;
return 0;
}
int CAbstractFSController::InitializeFSControl()
{
using namespace ZZ_MISCDEF::IRIS;
int iRes = 0;
if (m_iThreadID == -1/*|| m_iDeviceType == -1*/)
{
qDebug() << "Params Err. Call SetRunParas first";
return 1;
}
switch (m_fsInfo.ucDeviceModel)
{
case DeviceModel::OSIFAlpha:
m_pFSCtrl = new OceanOptics_lib;
if (m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, m_fsInfo.strSN) != 0)
{
qDebug() << "OSIFAlpha Not Opened";
return 2;
}
iRes = LoadQEProLinearCalibrationFile();
if (iRes != 0)
{
qDebug() << "LoadQEProLinearCalibrationFile Failed" << iRes;
//return 5;
}
break;
case DeviceModel::OSIFBeta:
m_pFSCtrl = new OceanOptics_lib;
if (m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, m_fsInfo.strSN) !=0)
{
qDebug() << "OSIFBeta Not Opened";
return 2;
}
iRes = LoadQEProLinearCalibrationFile();
if (iRes != 0)
{
qDebug() << "LoadQEProLinearCalibrationFile Failed" << iRes;
//return 5;
}
break;
case DeviceModel::ISIF:
m_pFSCtrl = new ZZ_ATPControl_Serial_Qt;
//m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, NULL);
if (m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, m_fsInfo.strSN) != 0)
{
qDebug() << "ISIF Not Opened";
return 3;
}
break;
case DeviceModel::IS1:
m_pFSCtrl = new ZZ_ATPControl_Serial_Qt;
//m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, NULL);
if (m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, m_fsInfo.strSN) != 0)
{
qDebug() << "IS1 Not Opened";
return 3;
}
break;
case DeviceModel::IS2:
m_pFSCtrl = new ZZ_ATPControl_Serial_Qt;
//m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, NULL);
if (m_pFSCtrl->Initialize(false, m_fsInfo.strInterface, m_fsInfo.strSN) != 0)
{
qDebug() << "IS2 Not Opened";
return 3;
}
break;
default:
break;
}
iRes = m_pFSCtrl->GetDeviceAttribute(m_daDeviceAttr);
if (iRes != 0)
{
qDebug() << "GetDeviceAttribute Failed" << iRes;
return 4;
}
iRes = m_pFSCtrl->SetDeviceTemperature(0);
if (iRes != 0)
{
qDebug() << "SetDeviceTemperature Failed" << iRes;
//return 5;
}
iFlagInit = 1;
return 0;
}
int CAbstractFSController::InitializeFSControl_Self()
{
//InitializeFSControl();
emit SignalInit_Self();
return 0;
}
int CAbstractFSController::GetDeviceAttr(DeviceAttribute &daAttr)
{
daAttr = m_daDeviceAttr;
return 0;
}
int CAbstractFSController::PerformAutoExposure()
{
qDebug() << "--------------------------Starting PerformAutoExposure" << " Thread ID:" << m_iThreadID;
using namespace ZZ_MATH;
float fPredictedExposureTime;
int iDeviceDepth = (int)m_fsInfo.lDepth;
qDebug() << "MAX---Min" << m_fsInfo.fMaxFactor << "---" << m_fsInfo.fMinFactor << " Thread ID:" << m_iThreadID;
bool bFlagIsOverTrying = false;
bool bFlagIsLowerMinExposureTime = false;
bool bFlagIsOverMaxExposureTime = false;
bool bFlagIsAutoExposureOK = false;
bool bFlagIsAutoExposureFailed = false;
bool bIsValueOverflow = false;
bool bIsLastValueOverflow = false;
int iExposureTime = 0;
float fTempExposureTime = 0;
double fLastExposureTime = 0.1;
int iRepeatCount = 0;
//int iRes = m_pFSCtrl->SetExposureTime(1000);//need change to load from files
int iRes = 0;
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1" << " Thread ID:" << m_iThreadID;
return 1;
}
while (!bFlagIsAutoExposureOK && !bFlagIsAutoExposureFailed)
{
DataFrame dfTemp;
if (iRepeatCount++ > 30)
{
bFlagIsAutoExposureFailed = true;
bFlagIsOverTrying = true;
break;
}
//m_pFSCtrl->SetExposureTime(5000);
m_pFSCtrl->GetExposureTime(iExposureTime);
qDebug() << "Current ExpTime:" << iExposureTime << " Thread ID:" << m_iThreadID;
//m_pFSCtrl->SetExposureTime(2500);
//fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS;
fTempExposureTime = iExposureTime;
iRes = m_pFSCtrl->SingleShot(dfTemp);
//iRes = m_pFSCtrl->SingleShot(dfTemp);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2" << " Thread ID:" << m_iThreadID;
return 2;
}
HeapSort(dfTemp.lData, m_daDeviceAttr.iPixels);
double dSum = 0;
int iCount = m_daDeviceAttr.iPixels / 200;
for (int i = 0; i < iCount; i++)
{
dSum += dfTemp.lData[i];
}
double dTemp = dSum / iCount;
qDebug() << "Avg " << dTemp << " Thread ID:" << m_iThreadID;
if (dTemp >= iDeviceDepth * 0.99)
{
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
}
else
{
iExposureTime = iExposureTime / 2;
}
}
else if (iDeviceDepth * m_fsInfo.fMaxFactor >= dTemp && dTemp >= iDeviceDepth * m_fsInfo.fMinFactor)
{
qDebug() << "trace bFlagIsAutoExposureOK =1 " << iExposureTime << " Thread ID:" << m_iThreadID;
bFlagIsAutoExposureOK = 1;
}
else if (dTemp > iDeviceDepth * m_fsInfo.fMaxFactor)
{
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
}
else
{
iExposureTime = iExposureTime * 3 / 4;
}
}
else if (dTemp < iDeviceDepth * m_fsInfo.fMinFactor)
{
bIsValueOverflow = false;
if (bIsLastValueOverflow)
{
iExposureTime = (float)(fLastExposureTime + iExposureTime) / 2;
}
else
{
double dFactor;
dFactor = dTemp / (iDeviceDepth * m_fsInfo.fMaxFactor);
iExposureTime = (float)(iExposureTime / dFactor);
}
}
bIsLastValueOverflow = bIsValueOverflow;
fLastExposureTime = fTempExposureTime;
if (/*fExposureTime > 100 || */iExposureTime <= m_daDeviceAttr.iMinIntegrationTimeInMS)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
bFlagIsLowerMinExposureTime = true;
// qDebug() << "Warning:PerformAutoExposure lower than min integration time.Will be limited to " << m_daDeviceAttr.iMinIntegrationTimeInMS - 1 << "MS" << " Thread ID:" << m_iThreadID;
// iRes = m_pFSCtrl->SetExposureTime((int)iExposureTime);
// if (iRes != 0)
// {
// qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4" << " Thread ID:" << m_iThreadID;
// return 3;
// }
// else
// {
// qDebug() << "Success:PerformAutoExposure. Value" << iExposureTime << " Thread ID:" << m_iThreadID;
// }
iRes = m_pFSCtrl->SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3" << " Thread ID:" << m_iThreadID;
return 3;
}
else
{
qDebug() << "Warning:PerformAutoExposure lower than min integration time.Will be limited to " << m_daDeviceAttr.iMinIntegrationTimeInMS << "MS" << " Thread ID:" << m_iThreadID;
}
break;
}
if (iExposureTime > m_daDeviceAttr.iMaxIntegrationTimeInMS-1)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
bFlagIsOverMaxExposureTime = true;
//float fPredictedExposureTime = m_daDeviceAttr.iMaxIntegrationTimeInMS-1;
//iRes = m_pFSCtrl->SetExposureTime(m_daDeviceAttr.iMaxIntegrationTimeInMS-1);
//if (iRes != 0)
//{
//qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3" << " Thread ID:" << m_iThreadID;
//return 3;
//}
//else
//{
//qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to 30sec";
//}
iRes = m_pFSCtrl->SetExposureTime(m_daDeviceAttr.iMaxIntegrationTimeInMS - 1);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3" << " Thread ID:" << m_iThreadID;
return 3;
}
else
{
qDebug() << "Warning:PerformAutoExposure exceed max integration time.Will be limited to " << m_daDeviceAttr.iMaxIntegrationTimeInMS - 1 << "MS" << " Thread ID:" << m_iThreadID;
}
break;
}
iRes = m_pFSCtrl->SetExposureTime((int)iExposureTime);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4" << " Thread ID:" << m_iThreadID;
return 3;
}
else
{
qDebug() << "Success:PerformAutoExposure. Value" << iExposureTime << " Thread ID:" << m_iThreadID;
}
}
fPredictedExposureTime = iExposureTime;
qDebug() << "--------------------------Stop PerformAutoExposure" << " Thread ID:" << m_iThreadID;
//emit SignalAcqFinished(m_iThreadID, 1);
return 0;
}
int CAbstractFSController::TakeDarkFrame()
{
qDebug() << "Starting TakeDarkFrame" << " Thread ID:" << m_iThreadID;
m_vecDataFrameDark.push_back(TakeOneFrame());
qDebug() << "Stop TakeDarkFrame" << " Thread ID:" << m_iThreadID;
//emit SignalAcqFinished(m_iThreadID, 1);
return 0;
}
int CAbstractFSController::TakeSignalFrame()
{
qDebug() << "Starting TakeSignal" << " Thread ID:" << m_iThreadID;
m_vecDataFrameSignal.push_back(TakeOneFrame());
qDebug() << "Stop TakeSignal" << " Thread ID:" << m_iThreadID;
//emit SignalAcqFinished(m_iThreadID, 1);
return 0;
}
DataFrame CAbstractFSController::TakeOneFrame()
{
using namespace ZZ_MISCDEF::IRIS;
//int iExpTime = 0;
DataFrame dfTemp;
// m_pFSCtrl->GetExposureTime(iExpTime);
// dfTemp.usExposureTimeInMS = iExpTime;
// m_pFSCtrl->GetDeviceTemperature(dfTemp.fTemperature);
if (m_fsInfo.ucDeviceModel== DeviceModel::ISIF)
{
float fTemp;
m_pFSCtrl->GetDeviceTemperature(fTemp);
dfTemp.fTemperature = fTemp;
}
else if(m_fsInfo.ucDeviceModel == DeviceModel::IS1)
{
dfTemp.fTemperature = 0;
}
int iRes = m_pFSCtrl->SingleShot(dfTemp);
if (iRes != 0)
{
qDebug() << "Err. SingleShot" << " Thread ID:" << m_iThreadID;
}
if (m_fsInfo.ucDeviceModel == DeviceModel::OSIFAlpha|| m_fsInfo.ucDeviceModel == DeviceModel::OSIFBeta)
{
if (m_vecNonLinearCalP.size() != 8)
{
qDebug() << "Err.Non Linear calibration parameters not fit.Skip..." << " Thread ID:" << m_iThreadID;
return dfTemp;
}
for (int i=0;i<m_daDeviceAttr.iPixels;i++)
{
dfTemp.lData[i] = dfTemp.lData[i] / ( m_vecNonLinearCalP[0] +
m_vecNonLinearCalP[1] * dfTemp.lData[i] +
m_vecNonLinearCalP[2] * pow(dfTemp.lData[i], 2) +
m_vecNonLinearCalP[3] * pow(dfTemp.lData[i], 3) +
m_vecNonLinearCalP[4] * pow(dfTemp.lData[i], 4) +
m_vecNonLinearCalP[5] * pow(dfTemp.lData[i], 5) +
m_vecNonLinearCalP[6] * pow(dfTemp.lData[i], 6) +
m_vecNonLinearCalP[7] * pow(dfTemp.lData[i], 7)
);
}
}
return dfTemp;
// DataFrame dfTemp;
// int iRes = m_pFSCtrl->SingleShot(dfTemp);
// if (iRes != 0)
// {
// qDebug() << "Err. SingleShot" << " Thread ID:" << m_iThreadID;
// }
//
// return dfTemp;
}
int CAbstractFSController::SaveDataFile()
{
return 0;
}
int CAbstractFSController::LoadQEProLinearCalibrationFile()
{
m_vecNonLinearCalP.clear();
QDir qdirPath(m_qstrCalFilePath);
if (!qdirPath.exists())
{
qDebug() << "Non-Linear Calibration Folder not exist" << " Thread ID:" << m_iThreadID;
return 1;
}
QString qstrFilePath;
qstrFilePath = m_qstrCalFilePath + QString("/")+QString::fromStdString(m_fsInfo.strSN)+ QString(".NLC");
QFile qfCalFile(qstrFilePath);
bool bRes = qfCalFile.open(QFile::ReadOnly);
if (!bRes)
{
qDebug() << "Non-Linear Calibration File open Failed" << " Thread ID:" << m_iThreadID;
return 2;
}
while (!qfCalFile.atEnd())
{
QByteArray qbData = qfCalFile.readLine();
qbData.remove(qbData.size()-1, 1);
m_vecNonLinearCalP.push_back(qbData.toDouble());
//qDebug() << qbData;
}
qfCalFile.close();
qDebug() <<"Non-Linear Calibration Params:"<< m_vecNonLinearCalP.size() << " Thread ID:" << m_iThreadID;
return 0;
}
int CAbstractFSController::StartAcquisitionSignal()
{
//
qDebug() << "Starting acq Signal" << " Thread ID:" << m_iThreadID;
// DataFrame struDF;
// int iii;
// m_pFSCtrl->SetExposureTime(10000000);
// m_pFSCtrl->GetExposureTime(iii);
// m_pFSCtrl->SingleShot(struDF);
PerformAutoExposure();
TakeSignalFrame();
qDebug() << "Stop acq Signal" << " Thread ID:" << m_iThreadID;
emit SignalAcqFinished_Signal(m_iThreadID, 1);
return 0;
}
int CAbstractFSController::StartAcquisitionDark()
{
qDebug() << "Starting acq Dark" << " Thread ID:" << m_iThreadID;
TakeDarkFrame();
qDebug() << "Stop acq Dark"<< " Thread ID:" << m_iThreadID;
emit SignalAcqFinished_Dark(m_iThreadID, 1);
return 0;
}
int CAbstractFSController::StopAcquisition()
{
return 0;
}
int CAbstractFSController::ClearBuffer()
{
m_vecDataFrameDark.clear();
m_vecDataFrameSignal.clear();
return 0;
}
int CAbstractFSController::GetBuffer(std::vector<DataFrame> &pvecDataFrameDark, std::vector<DataFrame> &pvecDataFrameSignal)
{
for (size_t i=0; i < m_vecDataFrameSignal.size(); i++)
{
pvecDataFrameSignal.push_back(m_vecDataFrameSignal[i]);
pvecDataFrameDark.push_back(m_vecDataFrameDark[i]);
}
return 0;
}