Files
M300CO2/Source/EGM96/EGM96.c
zhangzhuo 09a5436ad7 1.添加了EGM96-5的数据集和算法支持,可以正确求解GEOID Offset高度。
2.在同步时间时现在会将起飞点的海拔高度写回到配置文件/home/data/Settings/MainSettings.ini键值为WBACK/HeightOfHomePoint
3.现在的高度回调函数以及获取函数调整为了DJI_FC_SUBSCRIPTION_TOPIC_ALTITUDE_FUSED。
2023-04-07 15:46:09 +08:00

260 lines
8.5 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2006 D.Ineiev <ineiev@yahoo.co.uk>
* Copyright (c) 2020 Emeric Grange <emeric.grange@gmail.com>
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/*
* This program is designed for the calculation of a geoid undulation at a point
* whose latitude and longitude is specified.
*
* This program is designed to be used with the constants of EGM96 and those of
* the WGS84(g873) system. The undulation will refer to the WGS84 ellipsoid.
*
* It's designed to use the potential coefficient model EGM96 and a set of
* spherical harmonic coefficients of a correction term.
* The correction term is composed of several different components, the primary
* one being the conversion of a height anomaly to a geoid undulation.
* The principles of this procedure were initially described in the paper:
* - use of potential coefficient models for geoid undulation determination using
* a spherical harmonic representation of the height anomaly/geoid undulation
* difference by R.H. Rapp, Journal of Geodesy, 1996.
*
* This program is a modification of the program described in the following report:
* - a fortran program for the computation of gravimetric quantities from high
* degree spherical harmonic expansions, Richard H. Rapp, report 334, Department
* of Geodetic Science and Surveying, the Ohio State University, Columbus, 1982
*/
#include "EGM96.h"
#include "EGM96_data.h"
#include <math.h>
/* ************************************************************************** */
#define _coeffs (65341) //!< Size of correction and harmonic coefficients arrays (361*181)
#define _nmax (360) //!< Maximum degree and orders of harmonic coefficients.
#define _361 (361)
/* ************************************************************************** */
double hundu(double p[_coeffs+1],
double sinml[_361+1], double cosml[_361+1],
double gr, double re)
{
// WGS 84 gravitational constant in m³/s² (mass of Earths atmosphere included)
const double GM = 0.3986004418e15;
// WGS 84 datum surface equatorial radius
const double ae = 6378137.0;
double ar = ae/re;
double arn = ar;
double ac = 0;
double a = 0;
unsigned k = 3;
for (unsigned n = 2; n <= _nmax; n++)
{
arn *= ar;
k++;
double sum = p[k]*egm96_data[k][2];
double sumc = p[k]*egm96_data[k][0];
for (unsigned m = 1; m <= n; m++)
{
k++;
double tempc = egm96_data[k][0]*cosml[m] + egm96_data[k][1]*sinml[m];
double temp = egm96_data[k][2]*cosml[m] + egm96_data[k][3]*sinml[m];
sumc += p[k]*tempc;
sum += p[k]*temp;
}
ac += sumc;
a += sum*arn;
}
ac += egm96_data[1][0] + (p[2]*egm96_data[2][0]) + (p[3] * (egm96_data[3][0]*cosml[1] + egm96_data[3][1]*sinml[1]));
// Add haco = ac/100 to convert height anomaly on the ellipsoid to the undulation
// Add -0.53m to make undulation refer to the WGS84 ellipsoid
return ((a * GM) / (gr * re)) + (ac / 100.0) - 0.53;
}
void dscml(double rlon, double sinml[_361+1], double cosml[_361+1])
{
double a = sin(rlon);
double b = cos(rlon);
sinml[1] = a;
cosml[1] = b;
sinml[2] = 2*b*a;
cosml[2] = 2*b*b - 1;
for (unsigned m = 3; m <= _nmax; m++)
{
sinml[m] = 2*b*sinml[m-1] - sinml[m-2];
cosml[m] = 2*b*cosml[m-1] - cosml[m-2];
}
}
/*!
* \param m: order.
* \param theta: Colatitude (radians).
* \param rleg: Normalized legendre function.
*
* This subroutine computes all normalized legendre function in 'rleg'.
* The dimensions of array 'rleg' must be at least equal to nmax+1.
* All calculations are in double precision.
*
* Original programmer: Oscar L. Colombo, Dept. of Geodetic Science the Ohio State University, August 1980.
* ineiev: I removed the derivatives, for they are never computed here.
*/
void legfdn(unsigned m, double theta, double rleg[_361+1])
{
static double drts[1301], dirt[1301], cothet, sithet, rlnn[_361+1];
static int ir; // TODO 'ir' must be set to zero before the first call to this sub.
unsigned nmax1 = _nmax + 1;
unsigned nmax2p = (2 * _nmax) + 1;
unsigned m1 = m + 1;
unsigned m2 = m + 2;
unsigned m3 = m + 3;
unsigned n, n1, n2;
if (!ir)
{
ir = 1;
for (n = 1; n <= nmax2p; n++)
{
drts[n] = sqrt(n);
dirt[n] = 1 / drts[n];
}
}
cothet = cos(theta);
sithet = sin(theta);
// compute the legendre functions
rlnn[1] = 1;
rlnn[2] = sithet * drts[3];
for (n1 = 3; n1 <= m1; n1++)
{
n = n1 - 1;
n2 = 2 * n;
rlnn[n1] = drts[n2 + 1] * dirt[n2] * sithet * rlnn[n];
}
switch (m)
{
case 1:
rleg[2] = rlnn[2];
rleg[3] = drts[5] * cothet * rleg[2];
break;
case 0:
rleg[1] = 1;
rleg[2] = cothet * drts[3];
break;
}
rleg[m1] = rlnn[m1];
if (m2 <= nmax1)
{
rleg[m2] = drts[m1*2 + 1] * cothet * rleg[m1];
if (m3 <= nmax1)
{
for (n1 = m3; n1 <= nmax1; n1++)
{
n = n1 - 1;
if ((!m && n < 2) || (m == 1 && n < 3)) continue;
n2 = 2 * n;
rleg[n1] = drts[n2+1] * dirt[n+m] * dirt[n-m] * (drts[n2-1] * cothet * rleg[n1-1] - drts[n+m-1] * drts[n-m-1] * dirt[n2-3] * rleg[n1-2]);
}
}
}
}
/*!
* \param lat: Latitude in radians.
* \param lon: Longitude in radians.
* \param re: Geocentric radius.
* \param rlat: Geocentric latitude.
* \param gr: Normal gravity (m/sec²).
*
* This subroutine computes geocentric distance to the point, the geocentric
* latitude, and an approximate value of normal gravity at the point based the
* constants of the WGS84(g873) system are used.
*/
void radgra(double lat, double lon, double *rlat, double *gr, double *re)
{
const double a = 6378137.0;
const double e2 = 0.00669437999013;
const double geqt = 9.7803253359;
const double k = 0.00193185265246;
double t1 = sin(lat) * sin(lat);
double n = a / sqrt(1.0 - (e2 * t1));
double t2 = n * cos(lat);
double x = t2 * cos(lon);
double y = t2 * sin(lon);
double z = (n * (1 - e2)) * sin(lat);
*re = sqrt((x * x) + (y * y) + (z * z)); // compute the geocentric radius
*rlat = atan(z / sqrt((x * x) + (y * y))); // compute the geocentric latitude
*gr = geqt * (1 + (k * t1)) / sqrt(1 - (e2 * t1)); // compute normal gravity (m/sec²)
}
/*!
* \brief Compute the geoid undulation from the EGM96 potential coefficient model, for a given latitude and longitude.
* \param lat: Latitude in radians.
* \param lon: Longitude in radians.
* \return The geoid undulation / altitude offset (in meters).
*/
double undulation(double lat, double lon)
{
double p[_coeffs+1], sinml[_361+1], cosml[_361+1], rleg[_361+1];
double rlat, gr, re;
unsigned nmax1 = _nmax + 1;
// compute the geocentric latitude, geocentric radius, normal gravity
radgra(lat, lon, &rlat, &gr, &re);
rlat = (M_PI / 2) - rlat;
for (unsigned j = 1; j <= nmax1; j++)
{
unsigned m = j - 1;
legfdn(m, rlat, rleg);
for (unsigned i = j ; i <= nmax1; i++)
{
p[(((i - 1) * i) / 2) + m + 1] = rleg[i];
}
}
dscml(lon, sinml, cosml);
return hundu(p, sinml, cosml, gr, re);
}
/* ************************************************************************** */
double egm96_compute_altitude_offset(double lat, double lon)
{
const double rad = (180.0 / M_PI);
return undulation(lat/rad, lon/rad);
}
/* ************************************************************************** */