first commnit

This commit is contained in:
2022-08-16 09:26:36 +08:00
commit 11d5fc83c2
941 changed files with 168924 additions and 0 deletions

View File

@ -0,0 +1,882 @@
#include "pch.h"
#include "ATPControl_Serial_QT.h"
#include "ZZ_Math_HDRONLY.h"
ZZ_ATPControl_Serial_Qt::ZZ_ATPControl_Serial_Qt(QObject* parent /*= nullptr*/)
{
m_pSerialPort = new QSerialPort;
m_iBaudRate = 115200;
//emit SignalInit_Self();
}
ZZ_ATPControl_Serial_Qt::~ZZ_ATPControl_Serial_Qt()
{
if (m_pSerialPort != NULL)
{
delete m_pSerialPort;
}
}
// int ZZ_ATPControl_Serial_Qt::ReInit()
// {
// m_pSerialPort->close();
// delete m_pSerialPort;
//
// m_pSerialPort = new QSerialPort;
//
// m_pSerialPort->setPortName("COM7");
// m_pSerialPort->setReadBufferSize(512);
// bool bRes = m_pSerialPort->setBaudRate(m_iBaudRate);
// bRes = m_pSerialPort->open(QIODevice::ReadWrite);
// }
// int ZZ_ATPControl_Serial_Qt::SetBaudRate(int iBaud)
// {
// m_iBaudRate = iBaud;
// return 0;
// }
int ZZ_ATPControl_Serial_Qt::Initialize(bool bIsUSBMode, std::string ucPortNumber, std::string strDeviceName)
{
//connect(this, &ZZ_ATPControl_Serial_Qt::SignalInit_Self, this, &ZZ_ATPControl_Serial_Qt::Init_Self);
//emit SignalInit_Self();
QString qstrPortName = QString::fromStdString(ucPortNumber);
m_pSerialPort->setPortName(qstrPortName);
m_pSerialPort->setReadBufferSize(512);
bool bRes = m_pSerialPort->setBaudRate(m_iBaudRate);
if (!bRes)
{
qDebug() << "Err:setBaudRate Failed.Exit Code:1";
//std::cout << "Err.setBaudRate Failed" << std::endl;
return 1;
}
bRes = m_pSerialPort->open(QIODevice::ReadWrite);
if (!bRes)
{
qDebug() << "Err:open Failed.Exit Code:2";
//std::cout << "Err.open Failed" << std::endl;
return 2;
}
// int testi;
// GetDeviceAttribute(m_daDeviceAttr);
// GetExposureTime(testi);
// SetExposureTime(10000);
// DataFrame test;
// SingleShot(test);
GetDeviceInfo(m_diDeviceInfo);
GetExposureTime_Init();
SetAvgTimes(1);
std::string::size_type szPostion = m_diDeviceInfo.strSN.find(strDeviceName);
if (szPostion == std::string::npos)
{
qDebug() << "Err:FS serial number not match.Exit Code:3";
return 3;
}
else
{
return 0;
}
return 0;
}
void ZZ_ATPControl_Serial_Qt::Close()
{
m_pSerialPort->close();
}
int ZZ_ATPControl_Serial_Qt::GetDeviceInfo(DeviceInfo &Info)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_PN_NUMBER);
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
m_diDeviceInfo.strPN = qbRecv.data();
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_SN_NUMBER);
iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceInfo Failed,Communication error.Exit Code:1";
return 1;
}
m_diDeviceInfo.strSN = qbRecv.data();
Info = m_diDeviceInfo;
return 0;
}
int ZZ_ATPControl_Serial_Qt::GetDeviceAttribute(DeviceAttribute &Attr)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_MIN_INTEGRATION_TIME);
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
m_daDeviceAttr.iMinIntegrationTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_MAX_INTEGRATION_TIME);
iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
m_daDeviceAttr.iMaxIntegrationTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
///
int iTempExpTime = 0;
GetExposureTime(iTempExpTime);
iRes = SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Call SetExposureTime error.Exit Code:2";
//return 2;
}
iRes = SingleShot(m_daDeviceAttr.iPixels);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Call SingleShot error.Exit Code:3";
return 3;
}
SetExposureTime(iTempExpTime);
///
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_WAVELENGTH_CALIBRATION_COEF);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceAttribute Failed,Communication error.Exit Code:1";
return 1;
}
float fWaveLengthCoef[4];
memcpy(fWaveLengthCoef, qbRecv.data() + 16, 4 * sizeof(float));
for (int i = 0; i < m_daDeviceAttr.iPixels; i++)
{
m_daDeviceAttr.fWaveLengthInNM[i] = fWaveLengthCoef[0] * i*i*i + fWaveLengthCoef[1] * i*i + fWaveLengthCoef[2] * i + fWaveLengthCoef[3];
}
Attr = m_daDeviceAttr;
return 0;
}
int ZZ_ATPControl_Serial_Qt::SetDeviceTemperature(float fTemperature)
{
return 0;
}
int ZZ_ATPControl_Serial_Qt::SetAvgTimes(int iTimes /*= 1*/)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(SET_AVERAGE_NUMBER);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetAvgTimes Failed.Exit Code:3";
return 3;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::GetExposureTime_Init()
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_INTEGRATION_TIME);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetExposureTime Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetExposureTime Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetExposureTime Failed.Exit Code:3";
return 3;
}
m_iExposureTime = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
return 0;
}
int ZZ_ATPControl_Serial_Qt::SendCommand(QByteArray qbCommand)
{
m_pSerialPort->clear();
int iSize = qbCommand.size() + 3;
QByteArray qbSend;
qbSend.resize(4);
qbSend[0] = (ZZ_U8)0xAA;
qbSend[1] = 0x55;
qbSend[2] = iSize / 256;
qbSend[3] = iSize % 256;
qbSend.append(qbCommand);
int iSum = 0;
for (int i = 0; i < iSize - 1; i++)
{
iSum = iSum + qbSend[i + 2];
}
qbSend.append(iSum % 256);
qint64 qi64Write = m_pSerialPort->write(qbSend);
if (qi64Write != qbSend.size())
{
qDebug() << "Err:write Failed.Exit Code:1" << qi64Write;
return 1;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::RecvData(QByteArray &qbData)
{
qbData.clear();
qbData = m_pSerialPort->readAll();
int iCounter = 0;
while (qbData.size() < 4)
{
m_pSerialPort->waitForReadyRead(5000);
QByteArray qbTemp = m_pSerialPort->readAll();
qbData.append(qbTemp);
if (iCounter > 150)
{
qDebug() << "Err:RecvData Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1;
}
iCounter++;
}
if ((ZZ_U8)qbData[0] != (ZZ_U8)0xaa || (ZZ_U8)qbData[1] != (ZZ_U8)0x55)
{
qDebug() << "Err:RecvData Failed,Wrong Header.Exit Code:2" << qbData.size();
return 2;
}
iCounter = 0;
int iLength = qbData[2] * 256 + qbData[3] + 2;
while (qbData.size() < iLength)
{
m_pSerialPort->waitForReadyRead(5000);
qbData.append(m_pSerialPort->readAll());
if (iCounter > 200)
{
qDebug() << "Err:RecvData Failed,Incomplete Data.Exit Code:3" << qbData.size();
return 3;
}
iCounter++;
}
if (qbData.size() > iLength)
{
qbData.remove(iLength - 1, qbData.size() - iLength);
}
int iCheckSumLength = iLength - 3;
ZZ_U16 usCheckSum = 0;
for (int i = 0; i < iCheckSumLength; i++)
{
usCheckSum += qbData[i + 2];
}
usCheckSum = usCheckSum % 256;
ZZ_U8 ucTemp = qbData[qbData.size() - 1];
if ((ZZ_U8)usCheckSum != ucTemp)
{
qDebug() << "Err:RecvData Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp;
//qbData.clear();
//return 4;
return 0;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::RecvData_ShortLag(QByteArray &qbData)
{
qbData.clear();
qbData = m_pSerialPort->readAll();
int iCounter = 0;
while (qbData.size() < 4)
{
m_pSerialPort->waitForReadyRead(100);
QByteArray qbTemp = m_pSerialPort->readAll();
qbData.append(qbTemp);
if (iCounter > 6)
{
qDebug() << "Err:RecvData_ShortLag Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1;
}
iCounter++;
}
if ((ZZ_U8)qbData[0] != (ZZ_U8)0xaa || (ZZ_U8)qbData[1] != (ZZ_U8)0x55)
{
qDebug() << "Err:RecvData_ShortLag Failed,Wrong Header.Exit Code:2" << qbData.size();
return 2;
}
iCounter = 0;
int iLength = qbData[2] * 256 + qbData[3] + 2;
while (qbData.size() < iLength)
{
m_pSerialPort->waitForReadyRead(100);
qbData.append(m_pSerialPort->readAll());
if (iCounter > 6)
{
qDebug() << "Err:RecvData_ShortLag Failed,Incomplete Data.Exit Code:3" << qbData.size();
return 3;
}
iCounter++;
}
if (qbData.size() > iLength)
{
qbData.remove(iLength - 1, qbData.size() - iLength);
}
int iCheckSumLength = iLength - 3;
ZZ_U16 usCheckSum = 0;
for (int i = 0; i < iCheckSumLength; i++)
{
usCheckSum += qbData[i + 2];
}
usCheckSum = usCheckSum % 256;
ZZ_U8 ucTemp = qbData[qbData.size() - 1];
if ((ZZ_U8)usCheckSum != ucTemp)
{
qDebug() << "Err:RecvData_ShortLag Failed,Incorrect Check Sum.Exit Code:4" << "Total Recv:" << qbData.size() << "Check Sum:" << usCheckSum << "Not Equal To" << ucTemp;
//qbData.clear();
//return 4;
return 0;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::ParseData(QByteArray &qbData)
{
if (qbData.size() < 6)
{
qDebug() << "Err:ParseData Failed,Not Enough Data.Exit Code:1" << qbData.size();
return 1;
}
qbData.remove(0, 5);
qbData.remove(qbData.size() - 1, 1);
return 0;
}
int ZZ_ATPControl_Serial_Qt::Init_Self()
{
m_pSerialPort = new QSerialPort;
return 0;
}
int ZZ_ATPControl_Serial_Qt::PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime)
{
using namespace ZZ_MATH;
int iDeviceDepth = 65535;
bool bFlagIsOverTrying = false;
bool bFlagIsLowerMinExposureTime = false;
bool bFlagIsOverMaxExposureTime = false;
bool bFlagIsAutoExposureOK = false;
bool bFlagIsAutoExposureFailed = false;
bool bIsValueOverflow = false;
bool bIsLastValueOverflow = false;
float fExposureTime = 0;
float fTempExposureTime = 0;
double fLastExposureTime = 0.1;
int iRepeatCount = 0;
int iRes = SetExposureTime(m_daDeviceAttr.iMinIntegrationTimeInMS);//need change to load from files
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:1";
return 1;
}
while (!bFlagIsAutoExposureOK && !bFlagIsAutoExposureFailed)
{
DataFrame dfTemp;
if (iRepeatCount++ > 30)
{
bFlagIsAutoExposureFailed = true;
bFlagIsOverTrying = true;
qDebug() << "over 30 Times" << endl;
break;
}
//fExposureTime = (float)m_daDeviceAttr.iMinIntegrationTimeInMS;
int fTemp;
GetExposureTime(fTemp);
fExposureTime = fTemp;
fTempExposureTime = fExposureTime;
iRes = SingleShot(dfTemp);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:2";
return 2;
}
HeapSort(dfTemp.lData, m_daDeviceAttr.iPixels);
double dSum = 0;
int iCount = m_daDeviceAttr.iPixels / 100;
for (int i = 0; i < iCount; i++)
{
dSum += dfTemp.lData[i];
}
double dTemp = dSum / iCount;
if (dTemp >= iDeviceDepth * 0.99)
{
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
fExposureTime = fExposureTime / 2;
}
}
else if (iDeviceDepth * fMaxScaleFactor >= dTemp && dTemp >= iDeviceDepth * fMinScaleFactor)
{
bFlagIsAutoExposureOK = 1;
}
else if (dTemp > iDeviceDepth * fMaxScaleFactor)
{
bIsValueOverflow = true;
if (!bIsLastValueOverflow)
{
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
fExposureTime = fExposureTime * 3 / 4;
}
}
else if (dTemp < iDeviceDepth * fMinScaleFactor)
{
bIsValueOverflow = false;
if (bIsLastValueOverflow)
{
fExposureTime = (float)(fLastExposureTime + fExposureTime) / 2;
}
else
{
double dFactor;
dFactor = dTemp / (iDeviceDepth * fMaxScaleFactor);
fExposureTime = (float)(fExposureTime / dFactor);
}
if (fExposureTime < m_daDeviceAttr.iMinIntegrationTimeInMS)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
bFlagIsLowerMinExposureTime = true;
qDebug() << "lower than minimum" << endl;
}
}
bIsLastValueOverflow = bIsValueOverflow;
fLastExposureTime = fTempExposureTime;
if (fExposureTime > 13000)
{
bFlagIsAutoExposureOK = false;
bFlagIsAutoExposureFailed = true;
fPredictedExposureTime = 13000;
iRes = SetExposureTime(13000);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:3";
return 3;
}
bFlagIsOverMaxExposureTime = true;
break;
}
iRes = SetExposureTime((int)fExposureTime);
if (iRes != 0)
{
qDebug() << "Err:PerformAutoExposure Failed.Exit Code:4";
return 3;
}
}
fPredictedExposureTime = fExposureTime;
return 0;
}
// int ZZ_ATPControl_Serial_Qt::SetExtShutter(int iShutterUP0, int iShutterDOWN1, int iShutterDOWN2, int iShutterDOWN3)
// {
// qDebug() << "stub code not implemented";
// return -1;
// }
int ZZ_ATPControl_Serial_Qt::SetExposureTime(int iExposureTimeInMS)
{
m_iExposureTime = iExposureTimeInMS;
QByteArray qbExposureTime, qbRecv;
//qbExposureTime.append(SET_INTEGRATION_TIME);
qbExposureTime.resize(3);
qbExposureTime[0] = SET_INTEGRATION_TIME;
qbExposureTime[1] = iExposureTimeInMS >> 8;
qbExposureTime[2] = iExposureTimeInMS & 0xFF;
int iRes = SendCommand(qbExposureTime);
if (iRes != 0)
{
qDebug() << "Err:SetExposureTime Failed.Exit Code:2";
return 2;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetExposureTime Failed.Exit Code:3";
return 3;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SetExposureTime Failed.Exit Code:4";
return 4;
}
if ((ZZ_U8)qbRecv[0] != 0)
{
qDebug() << "Err:SetExposureTime Failed.Exit Code:1";
/*m_pSerialPort->waitForReadyRead(5000);
m_pSerialPort->clear();*/
//return 1;
}
return 0;
}
int ZZ_ATPControl_Serial_Qt::GetExposureTime(int &iExposureTimeInMS)
{
// QByteArray qbSend, qbRecv;
// qbSend.clear();
// qbRecv.clear();
// qbSend.append(GET_INTEGRATION_TIME);
// qbSend.resize(3);
// qbSend[1] = 0x00;
// qbSend[2] = 0x01;
// int iRes = SendCommand(qbSend);
// if (iRes != 0)
// {
// qDebug() << "Err:GetExposureTime Failed.Exit Code:1";
// return 1;
// }
// iRes = RecvData(qbRecv);
// if (iRes != 0)
// {
// qDebug() << "Err:GetExposureTime Failed.Exit Code:2";
// return 2;
// }
// iRes = ParseData(qbRecv);
// if (iRes != 0)
// {
// qDebug() << "Err:GetExposureTime Failed.Exit Code:3";
// return 3;
// }
//
// iExposureTimeInMS = (ZZ_U8)qbRecv[1] + (ZZ_U8)qbRecv[0] * 256;
iExposureTimeInMS = m_iExposureTime;
return 0;
}
int ZZ_ATPControl_Serial_Qt::SingleShot(DataFrame &dfData)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(SYNC_GET_DATA);
qbSend.resize(3);
// qbSend[1] = 0x00;
// qbSend[2] = 0x01;
qbSend[1] = m_iExposureTime >> 8;;
qbSend[2] = m_iExposureTime & 0xFF;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:SingleShot Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SingleShot Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SingleShot Failed.Exit Code:3";
return 3;
}
ZZ_U16 usData[4096] = { 0 };
if ((ZZ_U8)qbRecv[0] != 0)
{
qDebug() << "Err:SingleShot Failed.Exit Code:1";
return 1;
}
else
{
//int aaa = qbRecv.size();
int iDataSizeInPixel = (qbRecv.size() - 1) / 2;
memcpy(usData, qbRecv.data() + 1, iDataSizeInPixel * 2);
for (size_t i = 0; i < iDataSizeInPixel; i++)
{
dfData.lData[i] = qToBigEndian(usData[i]);
}
// for (int i = 0; i < iDataSizeInPixel; i++)
// {
// dfData.lData[i] = usData[i];
// }
}
dfData.usExposureTimeInMS = m_iExposureTime;
return 0;
}
int ZZ_ATPControl_Serial_Qt::SingleShot(int &iPixels)
{
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(SYNC_GET_DATA);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:SingleShotP Failed.Exit Code:1";
return 1;
}
iRes = RecvData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SingleShotP Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:SingleShot Failed.Exit Code:3";
return 3;
}
if ((ZZ_U8)qbRecv[0] != 0)
{
qDebug() << "Err:SingleShotP Failed.Exit Code:4";
return 4;
}
else
{
iPixels = (qbRecv.size() - 1) / 2;
}
return 0;
}
// int ZZ_ATPControl_Serial_Qt::SingleShotDark(ATPDataFrame &dfData)
// {
// SetExtShutter(0,0,0,0);
// SingleShot(dfData);
// return 0;
// }
int ZZ_ATPControl_Serial_Qt::GetDeviceTemperature(float &fTemperature)
{
fTemperature = 0;
QByteArray qbSend, qbRecv;
qbSend.clear();
qbRecv.clear();
qbSend.append(GET_TEC_TEMP);
qbSend.resize(3);
qbSend[1] = 0x00;
qbSend[2] = 0x01;
int iRes = SendCommand(qbSend);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceTemperature Failed.Exit Code:1";
return 1;
}
iRes = RecvData_ShortLag(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceTemperature Failed.Exit Code:2";
return 2;
}
iRes = ParseData(qbRecv);
if (iRes != 0)
{
qDebug() << "Err:GetDeviceTemperature Failed.Exit Code:3";
return 3;
}
QString qstrTemp = qbRecv.data();
fTemperature = qstrTemp.toFloat();
return 0;
}
//void ZZ_ATPControl_Serial_Qt::ReadMessage()
//{
// QByteArray qbTemp, qbTemp1;
// qbTemp = m_pSerialPort->readAll();
// while (qbTemp.size()<2)
// {
// m_pSerialPort->waitForReadyRead(50);
// qbTemp1 = m_pSerialPort->readAll();
// qbTemp.append(qbTemp1);
// }
//return;
// }

View File

@ -0,0 +1,97 @@
//////////////////////////////////////////////////////////////////////////
//ATP<54><50><EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD>
//////////////////////////////////////////////////////////////////////////
#pragma once
#include "pch.h"
#include "ZZ_Types.h"
#include "IrisFiberSpectrometerBase.h"
using namespace ZZ_MISCDEF;
using namespace ZZ_MISCDEF::ATP;
using namespace ZZ_MISCDEF::IRIS::FS;
class ZZ_ATPControl_Serial_Qt:public CIrisFSBase
{
Q_OBJECT
public:
ZZ_ATPControl_Serial_Qt(QObject* parent = nullptr);
virtual ~ZZ_ATPControl_Serial_Qt();
public:
//do not call
//int ReInit();
//<2F><><EFBFBD>ò<EFBFBD><C3B2><EFBFBD><EFBFBD><EFBFBD>
//int SetBaudRate(int iBaud);
//<2F><>ʼ<EFBFBD><CABC><EFBFBD>
int Initialize(bool bIsUSBMode, std::string ucPortNumber, std::string strDeviceName);
//<2F>ر<EFBFBD><D8B1>
void Close();
//<2F><><EFBFBD>β<EFBFBD><CEB2>Բɼ<D4B2> <20><><EFBFBD><EFBFBD>ȷ<EFBFBD><C8B7><EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int SingleShot(int &iPixels);
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݲɼ<DDB2>
int SingleShot(DataFrame &dfData);
//<2F><><EFBFBD>ΰ<EFBFBD><CEB0><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɼ<EFBFBD>
//int SingleShotDark(ATPDataFrame &dfData);
//int SingleShotDeducted(ATPDataFrame &dfData);
//<2F><><EFBFBD><EFBFBD><EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1>
int SetExposureTime(int iExposureTimeInMS);
//<2F><>ȡ<EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int GetExposureTime(int &iExposureTimeInMS);
//int GetWaveLength(float *pfWaveLength);
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ
int GetDeviceInfo(DeviceInfo &Info);
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int GetDeviceAttribute(DeviceAttribute &Attr);
//int GetDeviceListInfo(); //use type name to enum
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int SetDeviceTemperature(float fTemperature);
//<2F><>ȡ<EFBFBD><EFBFBD>
int GetDeviceTemperature(float &fTemperature);
//<2F>Զ<EFBFBD><D4B6>ع<EFBFBD>
int PerformAutoExposure(float fMinScaleFactor, float fMaxScaleFactor, float &fPredictedExposureTime);
private:
int SetAvgTimes(int iTimes = 1);
#ifdef _DEBUG
public:
#else //
private:
#endif
//port
int m_iBaudRate;
QSerialPort *m_pSerialPort;
//ATP
DeviceInfo m_diDeviceInfo;
DeviceAttribute m_daDeviceAttr;
//Attr
int m_iExposureTime;
//////////////////////////////////////////////////////////////////////////shutter control stub code s
//int SetExtShutter(int iShutterUP0, int iShutterDOWN1,int iShutterDOWN2,int iShutterDOWN3); //0:close 1:open
//////////////////////////////////////////////////////////////////////////shutter control stub code e
int GetExposureTime_Init();
int SendCommand(QByteArray qbCommand);
int RecvData(QByteArray &qbData);
int RecvData_ShortLag(QByteArray &qbData);
int ParseData(QByteArray &qbData);
public slots:
int Init_Self();
signals:
void SignalInit_Self();
//private slots :
//void ReadMessage();
};

View File

@ -0,0 +1,260 @@
#include "DataFileProcessor.h"
DataFileProcessor::DataFileProcessor(QObject* parent /*= nullptr*/)
{
#ifdef _DEBUG
m_qstrFilePath = "E:/WorkSpace/TowerOptoSifAndSpectral/Data";
#else
m_qstrFilePath = "/home/data/Data";
#endif // DEBUG
}
DataFileProcessor::~DataFileProcessor()
{
}
void DataFileProcessor::SetEnvironmentContex(EContext struEC)
{
m_struEC = struEC;
}
void DataFileProcessor::SetManmadeEnviromentalContext(MEContext struMEC)
{
m_struMEC = struMEC;
}
void DataFileProcessor::SetDeviceInfo(FSContext struDeviceContext)
{
m_struDeviceContext = struDeviceContext;
}
void DataFileProcessor::SetData(std::vector<std::vector<DataFrame>> vecData)
{
m_vecData.clear();
m_vecData = vecData;
}
bool DataFileProcessor::WriteDataFile()
{
GenerateFilePath();
WriteEnvironmentInfo();
WriteDeviceInfo();
WriteData();
return 1;
}
void DataFileProcessor::GenerateFilePath()
{
m_qdtTime = QDateTime::currentDateTime();
QString qstrAddYMD = m_qdtTime.toString("/yyyy_MM_dd");
QString qstrAddHMS = m_qdtTime.toString("_hh_mm_ss");
m_struEC.qstrUTCDateTime = m_qdtTime.toUTC().toString("yyyy_MM_dd hh:mm:ss");
m_qstrFullFileName = m_qstrFilePath + qstrAddYMD;
QString qstrTemp= m_qstrFullFileName;
if (m_struEC.qstrLocation=="")
{
m_struEC.qstrLocation = "Unknown";
}
m_qstrFullFileName= m_qstrFullFileName+"/"+m_struEC.qstrLocation + qstrAddHMS+".csv";
QDir qdirPath(qstrTemp);
if (!qdirPath.exists())
{
bool bRes = qdirPath.mkpath(qstrTemp);//20220812 mkdir change to mkpath
if (!bRes)
{
qDebug() << "DataFileProcessor mkdir Failed.";
}
}
}
bool DataFileProcessor::WriteEnvironmentInfo()
{
bool bRes = true;
QFile qfData(m_qstrFullFileName);
bRes = qfData.open(QFile::WriteOnly|QFile::Text|QFile::Truncate);
if (!bRes)
{
qDebug() << "WriteEnvironmentInfo open Failed.";
return bRes;
}
qDebug() << m_qstrFullFileName;
//EC
qfData.write("EnvironmentalContext,");
qfData.write("DEV_SN,");
qfData.write(m_struEC.qstrDEV_SN.toLatin1());
qfData.write(",");
qfData.write("CaseHumidity,");
qfData.write(m_struEC.qstrCaseHumidity.toLatin1());
qfData.write(",");
qfData.write("CaseTemperature,");
qfData.write(m_struEC.qstrCaseTemperature.toLatin1());
qfData.write(",");
qfData.write("GPS_Altitude,");
qfData.write(m_struEC.qstrGPS_Altitude.toLatin1());
qfData.write(",");
qfData.write("GPS_Latitude,");
qfData.write(m_struEC.qstrGPS_Latitude.toLatin1());
qfData.write(",");
qfData.write("GPS_Longtitude,");
qfData.write(m_struEC.qstrGPS_Longtitude.toLatin1());
qfData.write(",");
qfData.write("GPS_North,");
qfData.write(m_struEC.qstrGPS_North.toLatin1());
qfData.write(",");
qfData.write("Location,");
qfData.write(m_struEC.qstrLocation.toLatin1());
qfData.write(",");
qfData.write("UTCDateTime,");
qfData.write(m_struEC.qstrUTCDateTime.toLatin1());
qfData.write(",");
//qfData.write("\n");
//MEC
//qfData.write("ManmadeEnvironmentalContext\n");
qfData.write("DownlaodAddress,");
qfData.write(m_struMEC.qstrDownlaodAddress.toLatin1());
qfData.write(",");
qfData.write("DownloadUserID,");
qfData.write(m_struMEC.qstrDownloadUserID.toLatin1());
qfData.write(",");
qfData.write("HTTPServer,");
qfData.write(m_struMEC.qstrHTTPServer.toLatin1());
qfData.write(",");
qfData.write("InstallationTime,");
qfData.write(m_struMEC.qstrInstallationTime.toLatin1());
qfData.write(",");
qfData.write("NameOfMaintenanceStaff,");
qfData.write(m_struMEC.qstrNameOfMaintenanceStaff.toLatin1());
qfData.write(",");
qfData.write("PhoneNumberOfMaintenanceStaff,");
qfData.write(m_struMEC.qstrPhoneNumberOfMaintenanceStaff.toLatin1());
//qfData.write(",");
qfData.close();
return bRes;
}
void DataFileProcessor::WriteDeviceInfo()
{
QFile qfData(m_qstrFullFileName);
bool bRes = qfData.open(QFile::WriteOnly | QFile::Text | QIODevice::Append);
if (!bRes)
{
qDebug() << "WriteDeviceInfo open Failed.";
return;
}
QString qstrTemp;
qfData.write("\n");
qfData.write("TotalSpectrometer,");
qstrTemp = QString::number(m_struDeviceContext.ucDeviceNumber);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("TotalScanPoints,");
qstrTemp = QString::number(m_vecData[0].size());
qfData.write(qstrTemp.toLatin1());
qfData.write("\n");
for (int i=0;i< m_struDeviceContext.ucDeviceNumber;i++)
{
qstrTemp = QString("FS%1_Info").arg(i + 1);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("Model,");
using namespace ZZ_MISCDEF::IRIS;
qstrTemp = QString::fromStdString(GetDeviceModelName(m_struDeviceContext.ucDeviceModel[i]));
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("SN,");
qstrTemp = QString::fromStdString(m_struDeviceContext.strSN[i]);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("Pixels,");
qstrTemp = QString::number(m_struDeviceContext.usPixels[i]);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("Depth,");
qstrTemp = QString::number(m_struDeviceContext.lDepth[i]);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
qfData.write("TEC Temperature,");
qstrTemp = QString::number(m_vecData[i][0].fTemperature);
qfData.write(qstrTemp.toLatin1());
qfData.write("\n");
qfData.write("Wavelength,");
for (unsigned short j = 0; j < m_struDeviceContext.usPixels[i]-1; j++)
{
qstrTemp = QString::number(m_struDeviceContext.fWavelength[i][j]);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
}
qstrTemp = QString::number(m_struDeviceContext.fWavelength[i][m_struDeviceContext.usPixels[i] - 1]);
qfData.write(qstrTemp.toLatin1());
qfData.write("\n");
}
qfData.close();
}
bool DataFileProcessor::WriteData()
{
QFile qfData(m_qstrFullFileName);
bool bRes = qfData.open(QFile::WriteOnly | QFile::Text | QIODevice::Append);
if (!bRes)
{
qDebug() << "WriteData open Failed.";
return 0;
}
QString qstrTemp;
qfData.write("Data Section");
qfData.write("\n");
using namespace ZZ_MISCDEF::IRIS;
for (int i=0;i<m_struDeviceContext.ucDeviceNumber;i++)
{
for (int j=0;j<m_vecData[i].size();j++)
{
qstrTemp = QString::fromStdString(GetDeviceModelName(m_struDeviceContext.ucDeviceModel[i]));
qfData.write(qstrTemp.toLatin1());
qstrTemp = QString("_P%1").arg(j + 1);
qfData.write(qstrTemp.toLatin1());
qfData.write(",");
if ((m_vecData[i][j].fTemperature < 5) /*&& (m_vecData[i][j].fTemperature> -5)*/)
{
qfData.write("valid");
}
else
{
qfData.write("invalid");
}
qfData.write(",");
qstrTemp = QString::number(m_vecData[i][j].usExposureTimeInMS);
qfData.write(qstrTemp.toLatin1());
for (int k=0;k< m_struDeviceContext.usPixels[i];k++)
{
qfData.write(",");
qstrTemp = QString::number(m_vecData[i][j].lData[k]);
qfData.write(qstrTemp.toLatin1());
}
qfData.write("\n");
}
}
bool res = true;
return res;
}

View File

@ -0,0 +1,39 @@
#pragma once
#include "pch.h"
#include "ZZ_Types.h"
using namespace ZZ_MISCDEF::ZZ_DATAFILE;
using namespace ZZ_MISCDEF::ZZ_RUNPARAMS;
using namespace ZZ_MISCDEF::IRIS::FS;
class DataFileProcessor :public QObject
{
Q_OBJECT
public:
DataFileProcessor(QObject* parent = nullptr);
virtual ~DataFileProcessor();
public:
public:
void SetEnvironmentContex(EContext struEC);
void SetManmadeEnviromentalContext(MEContext struMEC);
void SetDeviceInfo(FSContext struDeviceContext);
void SetData(std::vector<std::vector<DataFrame>> vecData);
bool WriteDataFile();
private:
void GenerateFilePath();
bool WriteEnvironmentInfo();
void WriteDeviceInfo();
bool WriteData();
public:
private:
QString m_qstrFullFileName;
QString m_qstrFileName;
QString m_qstrFilePath;
QDateTime m_qdtTime;
EContext m_struEC;
MEContext m_struMEC;
FSContext m_struDeviceContext;
std::vector<std::vector<DataFrame>> m_vecData;
};

View File

@ -0,0 +1,45 @@
#include <string>
#include "ZZ_Types.h"
#include "pch.h"
#pragma once
using namespace ZZ_MISCDEF;
using namespace ZZ_MISCDEF::IRIS::FS;
class CIrisFSBase:public QObject
{
public:
//CIrisFSBase();
//virtual ~CIrisFSBase()= 0;
private:
//int m_iMaxDepth = 65535;
public:
//<2F><>ʼ<EFBFBD><CABC><EFBFBD>
//<2F>˴<EFBFBD>stringΪָ<CEAA><D6B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĸ<EFBFBD>ocean<61><6E><EFBFBD><EFBFBD><EFBFBD>ǵIJ<C7B5><C4B2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>и<EFBFBD><D0B8><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>c/c++<2B><>׼<EFBFBD><D7BC><EFBFBD><EFBFBD>
//0Ϊ<30>޴<EFBFBD><DEB4>󣬲<EFBFBD>ͬ<EFBFBD><CDAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ز<EFBFBD>ֵͬ
virtual int Initialize(bool bIsUSBMode, std::string ucPortNumber,std::string strDeviceName) = 0;
//<2F>ر<EFBFBD><D8B1>
virtual void Close() = 0;
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݲɼ<DDB2>
virtual int SingleShot(DataFrame &dfData) = 0;
//<2F><><EFBFBD><EFBFBD><EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1>
virtual int SetExposureTime(int iExposureTimeInMS) = 0;
//<2F><>ȡ<EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
virtual int GetExposureTime(int &iExposureTimeInMS) = 0;
//<2F><><EFBFBD><EFBFBD>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD>
virtual int SetDeviceTemperature(float fTemperature) = 0;
//<2F><>ȡ<EFBFBD><EFBFBD><C2B6><EFBFBD><EFBFBD><EFBFBD>
virtual int GetDeviceTemperature(float &fTemperature) = 0;
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ
virtual int GetDeviceInfo(DeviceInfo &Info) = 0;
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
virtual int GetDeviceAttribute(DeviceAttribute &Attr) = 0;
};

559
source/FS/OControl_USB.cpp Normal file
View File

@ -0,0 +1,559 @@
#include "OControl_USB.h"
#include <iostream>
#include <cstring>
OceanOptics_lib::OceanOptics_lib()
{
m_iSpectralmeterHandle = -100;
}
OceanOptics_lib::~OceanOptics_lib()
{
}
//ʹ<><CAB9>ͷ<EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>#include "api/SeaBreezeWrapper.h"
int OceanOptics_lib::Initialize(bool bIsUSBMode, std::string ucPortNumber, std::string strDeviceName)
{
int flag;
int error;
//char type[16];
int device_count = 0;
int i;
for (i = 0; i < SEABREEZE_MAX_DEVICES; i++)
{
// printf("\nOpening spectrometer %d.\n", i);
flag = seabreeze_open_spectrometer(i, &error);
// printf("Open spectrometer result is (%d) [%s]\n", flag, get_error_string(error));
if (0 == flag)
{
device_count++;
}
else
{
continue;
}
string sn = GetSerialNumber(i);
if (strcmp(sn.c_str(), strDeviceName.c_str()) == 0)
{
m_iSpectralmeterHandle = i;
// printf("\nfind!!!!!!!!!!!!\n");
break;
}
else
{
// printf("\nClosing spectrometer %d.\n", i);
flag = seabreeze_close_spectrometer(i, &error);
// printf("Close spectrometer result is (%d) [%s]\n", flag, get_error_string(error));
}
}
if (m_iSpectralmeterHandle == -100)
{
// printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
long test = seabreeze_get_buffer_capacity_minimum(m_iSpectralmeterHandle, &error);
seabreeze_set_buffer_capacity(m_iSpectralmeterHandle, &error, test);
//seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
//seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
// printf("seabreeze_set_trigger_mode: Result is [%s]\n", get_error_string(error));
//<2F><><EFBFBD>ó<EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
long minimum_time;
minimum_time = seabreeze_get_min_integration_time_microsec(m_iSpectralmeterHandle, &error);
//printf("...Minimum is %ld microseconds, result is [%s]\n", minimum_time, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
// printf("\n-------------------û<>ɹ<EFBFBD><C9B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n");
return 1;
}
if (minimum_time < 0) {
/* If there was an error, reset to a time that is supported widely. */
minimum_time = 15000;
return 1;
}
SetExposureTime(minimum_time / 1000);
return 0;
}
//ʹ<><CAB9>ͷ<EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>#include "api/SeaBreezeWrapper.h"
int OceanOptics_lib::Initialize()
{
int flag;
int error;
//char type[16];
int device_count = 0;
int i;
for (i = 0; i < SEABREEZE_MAX_DEVICES; i++)
{
printf("\nOpening spectrometer %d.\n", i);
flag = seabreeze_open_spectrometer(i, &error);
//printf("Open spectrometer result is (%d) [%s]\n", flag, get_error_string(error));
if (0 == flag)
{
m_iSpectralmeterHandle = i;
break;
}
else
{
continue;
}
}
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
seabreeze_set_trigger_mode(m_iSpectralmeterHandle, &error, 0);
// printf("seabreeze_set_trigger_mode: Result is [%s]\n", get_error_string(error));
//<2F><><EFBFBD>ó<EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
long minimum_time;
minimum_time = seabreeze_get_min_integration_time_microsec(m_iSpectralmeterHandle, &error);
//printf("...Minimum is %ld microseconds, result is [%s]\n", minimum_time, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
// printf("\n-------------------û<>ɹ<EFBFBD><C9B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>\n");
return 1;
}
if (minimum_time < 0) {
/* If there was an error, reset to a time that is supported widely. */
minimum_time = 15000;
return 1;
}
SetExposureTime(minimum_time / 1000);
return 0;
}
//ʹ<><CAB9>ͷ<EFBFBD>ļ<EFBFBD><C4BC><EFBFBD>#include "api/seabreezeapi/SeaBreezeAPI.h"
//int OceanOptics_lib::Initialize(bool bIsUSBMode,ZZ_U8 ucPortNumber,std::string strDeviceName)
//{
// int number_of_devices;
// long *device_ids;
// int i;
// int flag;
// int error = 0;
// char nameBuffer[80];
// char *serialNumber;
//
//
//// /* Give the driver a chance to initialize itself */
//// sbapi_initialize();
//
// printf("Probing for devices...\n"); fflush(stdout);
// sbapi_probe_devices();
//
// printf("Getting device count...\n"); fflush(stdout);
// number_of_devices = sbapi_get_number_of_device_ids();
// std::cout<<"Device count is "<< number_of_devices <<std::endl;
// if(0 == number_of_devices) {
// return 0;
// }
//
// printf("Getting device IDs...\n");
// device_ids = (long *)calloc(number_of_devices, sizeof(long));
// number_of_devices = sbapi_get_device_ids(device_ids, number_of_devices);
// printf("Got %d device ID%s.\n", number_of_devices, number_of_devices == 1 ? "" : "s"); fflush(stdout);
//
//
// for(i = 0; i < number_of_devices; i++)
// {
// printf("%d: Device 0x%02lX:\n", i, device_ids[i]);
//// printf("\tGetting device type...\n");
// flag = sbapi_get_device_type(device_ids[i], &error, nameBuffer, 79);
//// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
// if(flag > 0) {
// printf("\tDevice type: [%s]\n", nameBuffer);
// }
//
// serialNumber = GetSerialNumber(device_ids[i]);
// serialNumber = GetSerialNumber(device_ids[i]);
//
// printf("\tSerial number tc: [%s]\n", serialNumber);
//
//// /* Open the device */
//// printf("\tAttempting to open:\n");
//// flag = sbapi_open_device(device_ids[i], &error);
//// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
////
//// // jump to the next iteration if there was a problem
//// if(flag != 0) {
//// continue;
//// }
////
//// // log deviations
//// unsupportedFeatureCount=0;
//// testFailureCount=0;
////
//// /* Test the device */
//// for(test_index = 0; test_index < __test_function_count; test_index++) {
//// /* Invoke each of the test functions against this device */
//// __test_functions[test_index](device_ids[i], &unsupportedFeatureCount, &testFailureCount);
//// }
////
//// /* Close the device */
//// printf("\tAttempting to close:\n");
//// sbapi_close_device(device_ids[i], &error);
//// printf("\t\tResult is (%d) [%s]\n", flag, sbapi_get_error_string(error));
//// printf("%d: Device 0x%02lX: \n\tNumber of unsupported features = %d\n\tNumber of test failures = %d\n", i, device_ids[i], unsupportedFeatureCount, testFailureCount);
// }
//
// flag = sbapi_get_device_type(device_ids[i], &error, nameBuffer, 79);
//
// return 1;
//}
//<2F>ر<EFBFBD><D8B1>
void OceanOptics_lib::Close()
{
int flag;
int error;
flag = seabreeze_close_spectrometer(m_iSpectralmeterHandle, &error);
// printf("Close spectrometer result is (%d) [%s]\n", flag, get_error_string(error));
}
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݲɼ<DDB2>
int OceanOptics_lib::SingleShot(DataFrame &dfData)
{
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
int error;
int flag;
int spec_length;
double *spectrum = 0;
bool ret;
// printf("\n\nGetting formatted spectrum length.\n");
spec_length = seabreeze_get_formatted_spectrum_length(m_iSpectralmeterHandle, &error);
//printf("Get formatted spectrum_length result is (%d) [%s]\n", spec_length, get_error_string(error));
ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
if (spec_length > 0)
{
spectrum = (double *)calloc((size_t)spec_length, sizeof(double));
seabreeze_clear_buffer(m_iSpectralmeterHandle, &error);
printf("\nGetting a formatted spectrum.\n");
flag = seabreeze_get_formatted_spectrum(m_iSpectralmeterHandle, &error, spectrum, spec_length);
printf("\nGetting a formatted spectrum------------------------------.\n");
// printf("Get formatted spectrum result is (%d) [%s]\n", flag, get_error_string(error));
// printf("\tPixel value 20 is %1.2f\n", spectrum[20]);
ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
for (int tmp = 0; tmp < spec_length; tmp++)
{
dfData.lData[tmp] = spectrum[tmp];
}
int exposureTimeInMS;
GetExposureTime(exposureTimeInMS);
dfData.usExposureTimeInMS = exposureTimeInMS;
float temperature;
GetDeviceTemperature(temperature);
dfData.fTemperature = temperature;
free(spectrum);
}
return 0;
}
//<2F><><EFBFBD><EFBFBD><EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1>
int OceanOptics_lib::SetExposureTime(int iExposureTimeInMS)
{
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
int error;
seabreeze_set_integration_time_microsec(m_iSpectralmeterHandle, &error, iExposureTimeInMS * 1000);
printf("Set integration time result is [%s]\n", get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
m_iExposureTime = iExposureTimeInMS;
// //----------------------------------------------------------------------------------------------------------------
// int error;
// long *spectrometer_ids;
// int number_of_spectrometers;
//
// number_of_spectrometers = sbapi_get_number_of_spectrometer_features(m_iSpectralmeterHandle, &error);
// printf("\t\t\tResult is %d [%s]\n", number_of_spectrometers, sbapi_get_error_string(error));
// spectrometer_ids = (long *)calloc(number_of_spectrometers, sizeof(long));
// number_of_spectrometers = sbapi_get_spectrometer_features(m_iSpectralmeterHandle, &error, spectrometer_ids, number_of_spectrometers);
// printf("\t\t\tResult is %d [%s]\n", number_of_spectrometers, sbapi_get_error_string(error));
//
// sbapi_spectrometer_set_integration_time_micros(m_iSpectralmeterHandle, spectrometer_ids[0], &error, iExposureTimeInMS*1000);
// printf("\t\t\t\tResult is [%s]\n", sbapi_get_error_string(error));
return 0;
}
//<2F><>ȡ<EFBFBD>ع<EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int OceanOptics_lib::GetExposureTime(int &iExposureTimeInMS)
{
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
iExposureTimeInMS = m_iExposureTime;
return 0;
}
//<2F><><EFBFBD><EFBFBD>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD>
int OceanOptics_lib::SetDeviceTemperature(float fTemperature)
{
bool ret;
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
int error;
// printf("\nSetting TEC temperature to -5C\n");
seabreeze_set_tec_temperature(m_iSpectralmeterHandle, &error, fTemperature);
// printf("Set tec temperature result is [%s]\n", get_error_string(error));
ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
// printf("\nSetting TEC enable to true\n");
seabreeze_set_tec_enable(m_iSpectralmeterHandle, &error, 1);
// printf("Set tec enable result is [%s]\n", get_error_string(error));
ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
return 0;
}
//<2F><>ȡ<EFBFBD><EFBFBD><C2B6><EFBFBD><EFBFBD><EFBFBD>
int OceanOptics_lib::GetDeviceTemperature(float &fTemperature)
{
fTemperature = 0;
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
double temp;
int error;
// usleep(1000000);
// printf("\nGetting TEC temperature\n");
temp = seabreeze_read_tec_temperature(m_iSpectralmeterHandle, &error);
// printf("Read tec temperature result is %1.2f C [%s]\n", temp, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
fTemperature = temp;
return 0;
}
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8>Ϣ
int OceanOptics_lib::GetDeviceInfo(DeviceInfo &Info)
{
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
string deviceType = GetDeviceType(m_iSpectralmeterHandle);
string SN = GetSerialNumber(m_iSpectralmeterHandle);
Info.strPN = deviceType;
Info.strSN = SN;
return 0;
}
//<2F><>ȡ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int OceanOptics_lib::GetDeviceAttribute(DeviceAttribute &Attr)
{
if (m_iSpectralmeterHandle == -100)
{
printf("\nNo!!!!!!!!!!!!\n");
return 1;
}
int error;
int flag;
int spec_length;
double *wls = 0;
// printf("\n\nGetting formatted spectrum length.\n");
spec_length = seabreeze_get_formatted_spectrum_length(m_iSpectralmeterHandle, &error);
// printf("Get formatted spectrum length result is (%d) [%s]\n", spec_length, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
Attr.iPixels = spec_length;
long minimum_time;
minimum_time = seabreeze_get_min_integration_time_microsec(m_iSpectralmeterHandle, &error);
Attr.iMinIntegrationTimeInMS = (int)((double)minimum_time / (double)1000);
Attr.iMaxIntegrationTimeInMS = 60000;
if (spec_length > 0) {
wls = (double *)calloc((size_t)spec_length, sizeof(double));
// printf("\nGetting wavelengths.\n");
flag = seabreeze_get_wavelengths(m_iSpectralmeterHandle, &error, wls, spec_length);
// printf("Get wavelengths result is (%d) [%s]\n", flag, get_error_string(error));
// printf("\tPixel 20 is wavelength %1.2f nm\n", wls[20]);
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return 1;
}
for (int tmp = 0; tmp < spec_length; tmp++)
{
Attr.fWaveLengthInNM[tmp] = wls[tmp];
}
free(wls);
}
return 0;
}
bool OceanOptics_lib::isSuccess(char* resultStr)
{
if (strstr(resultStr, "Success") == NULL)//<2F><>a<EFBFBD>в<EFBFBD><D0B2><EFBFBD>b<EFBFBD><62><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD>
{
//cout << "not found\n";//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
return false;
}
else//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڡ<EFBFBD>
{
//cout <<"found\n"; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
return true;
}
}
const char* OceanOptics_lib::get_error_string(int error)
{
static char buffer[32];
seabreeze_get_error_string(error, buffer, sizeof(buffer));
return buffer;
}
string OceanOptics_lib::GetDeviceType(int index)
{
char type[16];
int error;
seabreeze_get_model(index, &error, type, sizeof(type));
// printf("...Result is (%s) [%s]\n", type, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return "";
}
type[15] = '\0';
string deviceType = type;
return deviceType;
}
string OceanOptics_lib::GetSerialNumber(int index)
{
static char serial_number[32];//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>static<69><63><EFBFBD>˱<EFBFBD><CBB1><EFBFBD><EFBFBD><EFBFBD><E1B6A8><EFBFBD><EFBFBD>stack<63><6B><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>غ󣬾<D8BA><F3A3ACBE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int flag;
int error;
// printf("\n\nGetting serial number.\n");
flag = seabreeze_get_serial_number(index, &error, serial_number, 32);
// printf("Get serial number result is (%d) [%s]\n", flag, get_error_string(error));
bool ret = isSuccess((char*)get_error_string(error));
if (!ret)
{
return "";
}
serial_number[31] = '\0';
if (flag > 0) {
printf("\tSerial number: [%s]\n", serial_number);
}
string sn = serial_number;
return sn;
}

57
source/FS/OControl_USB.h Normal file
View File

@ -0,0 +1,57 @@
#pragma once
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include "api/SeaBreezeWrapper.h"
#include "IrisFiberSpectrometerBase.h"
using namespace std;
class OceanOptics_lib :public CIrisFSBase
{
public:
OceanOptics_lib();
virtual ~OceanOptics_lib();
public:
//初始化设备
//此处string为指明连接哪个ocean光谱仪的参数可自行更换为其他c/c++标准类型
//0为无错误不同错误请返回不同值(不能确定当不成功时SeaBreeze返回的错误代码error不为0 → 不敢将error直接返回)
int Initialize(bool bIsUSBMode, std::string ucPortNumber, std::string strDeviceName);//ok
int Initialize();//ok
//关闭设备
void Close();//ok
//单次数据采集
int SingleShot(DataFrame &dfData);
//设置曝光时间
int SetExposureTime(int iExposureTimeInMS);//ok
//获取曝光时间设置
int GetExposureTime(int &iExposureTimeInMS);//ok
//设置目标温度
int SetDeviceTemperature(float fTemperature);//ok
//获取温度设置
int GetDeviceTemperature(float &fTemperature);//ok
//获取设备信息
int GetDeviceInfo(DeviceInfo &Info);//ok
//获取设备特征数据
int GetDeviceAttribute(DeviceAttribute &Attr);//ok
//tc
static const char* get_error_string(int error);
private:
int m_iSpectralmeterHandle;
DeviceInfo m_deviceInfo;
int m_iExposureTime;
bool isSuccess(char* resultStr);
string GetDeviceType(int index);
string GetSerialNumber(int index);
};

359
source/FS/ZZ_Types.h Normal file
View File

@ -0,0 +1,359 @@
//////////////////////////////////////////////////////////////////////////
//<2F><><EFBFBD><EFBFBD>˵<EFBFBD><CBB5><EFBFBD>ļ<EFBFBD>
//////////////////////////////////////////////////////////////////////////
#pragma once
#include "pch.h"
#include <string>
#define MAX_DEVICENUMBER_FS 2
#define MAX_LINEARSHUTTER_POSITION 12
#define ZZ_Enum2String(x) #x
namespace ZZ_MISCDEF
{
typedef unsigned char ZZ_U8;
typedef unsigned short int ZZ_U16;
typedef unsigned int ZZ_U32;
typedef long int ZZ_S32;
namespace IRIS
{
//Fiber Spectrometer
namespace FS
{
typedef struct tagDataFrame
{
ZZ_U32 usExposureTimeInMS = 0;
ZZ_S32 lData[4096] = {0};
float fTemperature = 0;
double dTimes = 0;
}DataFrame;
typedef struct tagDeviceInfo
{
std::string strPN;
std::string strSN;
}DeviceInfo;
typedef struct tagDeviceAttribute
{
int iPixels;
int iMaxIntegrationTimeInMS;
int iMinIntegrationTimeInMS;
float fWaveLengthInNM[4096];
}DeviceAttribute;
// inline DataFrame GetIndex(DataFrame dfDark, DataFrame dfSignal)
// {
//
// }
}
enum DeviceModel
{
OSIFAlpha=0,
OSIFBeta,
ISIF,
IS1,
IS2
};
inline std::string GetDeviceModelName(int iModel)
{
switch (iModel)
{
case DeviceModel::OSIFAlpha: return "OSIFAlpha"; break;
case DeviceModel::OSIFBeta: return "OSIFBeta"; break;
case DeviceModel::ISIF: return "ISIF"; break;
case DeviceModel::IS1: return "IS1"; break;
case DeviceModel::IS2: return "IS2"; break;
default: return "error"; break;
}
}
inline int GetIndex(std::string strDeviceModelName)
{
if (strDeviceModelName == "OSIFAlpha")
{
return DeviceModel::OSIFAlpha;
}
else if (strDeviceModelName == "OSIFBeta")
{
return DeviceModel::OSIFBeta;
}
else if (strDeviceModelName == "ISIF")
{
return DeviceModel::ISIF;
}
else if (strDeviceModelName == "IS1")
{
return DeviceModel::IS1;
}
else if (strDeviceModelName == "IS2")
{
return DeviceModel::IS2;
}
else
{
return -1;
}
}
};
//ATPָ<50><D6B8>ת<EFBFBD><D7AA>
namespace ATP
{
const int MAX_SPECTRUM_SIZE = 4096;
const int GET_MODULECIRCUIT_TEMP = 0x01;
const int GET_PN_NUMBER = 0x03;
const int GET_SN_NUMBER = 0x04;
const int GET_MANUFACTURE_DATA = 0x06;
const int GET_MANUFACTURE_INFO = 0x09;
const int GET_PIXEL_LENGTH = 0x0a;
const int GET_TEC_TEMP = 0x13;
const int SET_TEC_TEMP = 0x12;
const int GET_OPTICS_TEMP = 0x35;
const int GET_CIRCUITBOARD_TEMP = 0x36;
const int SET_INTEGRATION_TIME = 0x14;
const int GET_INTEGRATION_TIME = 0x41;
const int GET_MAX_INTEGRATION_TIME = 0x42;
const int GET_MIN_INTEGRATION_TIME = 0x43;
const int ASYNC_COLLECT_DARK = 0x23;
const int ASYNC_START_COLLECTION = 0x16;
const int ASYNC_READ_DATA = 0x17;
const int SET_AVERAGE_NUMBER = 0x28;
const int SYNC_GET_DATA = 0x1e;
const int SYNC_GET_DARK = 0x2f;
const int EXTERNAL_TRIGGER_ENABLE = 0x1f;
const int SET_XENON_LAMP_DELAY_TIME = 0x24;
const int GET_WAVELENGTH_CALIBRATION_COEF = 0x55;
const int GET_STAT_LAMPOUT = 0x60;
const int SET_GPIO = 0x61;
//const int SYNCHRONIZATION_GET_DARK = 0x23
//////////////////////////////////////////////////////////////////////////device
enum Model
{
ATP1010 = 0,
ATP6500
};
//<2F><><EFBFBD><EFBFBD>֡<EFBFBD><D6A1><EFBFBD><EFBFBD>
typedef struct tagATPDataFrame
{
unsigned short usExposureTime;
ZZ_U16 usData[4096];
float fTemperature;
double dTimes = 0;
}ATPDataFrame;
//<2F><EFBFBD><E8B1B8>Ϣ<EFBFBD><CFA2><EFBFBD><EFBFBD>
typedef struct tagATPDeviceInfo
{
std::string strPN;
std::string strSN;
}ATPDeviceInfo;
//<2F><EFBFBD><E8B1B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
typedef struct tagATPDeviceAttribute
{
int iPixels;
int iMaxIntegrationTime;
int iMinIntegrationTime;
float fWaveLength[4096];
}ATPDeviceAttribute;
//////////////////////////////////////////////////////////////////////////config file
}
//<2F><><EFBFBD>в<EFBFBD><D0B2><EFBFBD>
namespace ZZ_RUNPARAMS
{
typedef struct tagErrorInfo
{
int iDataTransferErr = -1000;
float fTecTempErr = -1000;
int iShutterErr = -1000;
float fChassisTempErr = -1000;
}ErrInfo;
typedef struct tagFiberSpecContext
{
ZZ_U8 ucDeviceNumber;
ZZ_U8 ucDeviceModel[MAX_DEVICENUMBER_FS];
std::string strInterface[MAX_DEVICENUMBER_FS];
std::string strSN[MAX_DEVICENUMBER_FS];
long lDepth[MAX_DEVICENUMBER_FS];
float fMinFactor[MAX_DEVICENUMBER_FS];
float fMaxFactor[MAX_DEVICENUMBER_FS];
ZZ_U16 usPixels[MAX_DEVICENUMBER_FS];
float fWavelength[MAX_DEVICENUMBER_FS][4096];
}FSContext;
typedef struct tagDualShutterStatus
{
std::string strChannelA;
std::string strChannelB;
int iChannelA = 0;
int iChannelB = 0;
}DSStatus;
typedef struct tagLinearShutterContext
{
std::string strInterface;
ZZ_U8 ucProtocolType;
ZZ_U16 usCmdID;
}LSContext;
typedef struct tagAcquisitionTimeSettings
{
QTime qtStartTime;
QTime qtStopTime;
QTime qtInterval;
}AcqTimeSettings;
typedef struct tagAcquisitionPositionSettings
{
int iTotalPosition;
int iPosition[MAX_LINEARSHUTTER_POSITION];
}AcqPosSettings;
typedef struct tagRunTimeGrabberParams
{
LSContext lscParam;
FSContext fscParams;
AcqTimeSettings atsParams;
AcqPosSettings apsParams;
}RunTimeGrabberParams;
typedef struct tagATPCalibrationSettings
{
//Up0 Down1,2,3
QString qsISIF_CalibrationFilePath[4];
QString qsIS1_CalibrationFilePath[4];
}ATPCalibrationSettings;
}
//ϵͳ<CFB5><CDB3><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC>
namespace ZZ_DATAFILE
{
typedef struct tagEnvironmentalContext
{
QString qstrUTCDateTime;
QString qstrLocation;
QString qstrGPS_Longtitude;
QString qstrGPS_Latitude;
QString qstrGPS_Altitude;
QString qstrGPS_North;
QString qstrCaseTemperature;
QString qstrCaseHumidity;
QString qstrDEV_SN;
}EContext;
typedef struct tagManmadeEnviromentalContext
{
QString qstrOriFileName;
QString qstrInstallationTime;
QString qstrISIFCalibrationTime;
QString qstrIS1CalibrationTime;
QString qstrNameOfMaintenanceStaff;
QString qstrPhoneNumberOfMaintenanceStaff;
QString qstrDownloadUserID;
QString qstrDownlaodAddress;
QString qstrHTTPServer;
}MEContext;
typedef struct tagIS1Information
{
QString qstrSN_ATP;
QString qstrSN_IRIS;
QString qstrCalFile_U0;
QString qstrCalFile_D1;
QString qstrCalFile_D2;
QString qstrCalFile_D3;
int iPixelCount;
int iExposureTimeInMS_U0;
int iExposureTimeInMS_D1;
int iExposureTimeInMS_D2;
int iExposureTimeInMS_D3;
float fTemperature_U0;
float fTemperature_D1;
float fTemperature_D2;
float fTemperature_D3;
}IS1Info;
typedef struct tagISIFInformation
{
QString qstrSN_ATP;
QString qstrSN_IRIS;
QString qstrCalFile_U0;
QString qstrCalFile_D1;
QString qstrCalFile_D2;
QString qstrCalFile_D3;
int iPixelCount;
int iExposureTimeInMS_U0;
int iExposureTimeInMS_D1;
int iExposureTimeInMS_D2;
int iExposureTimeInMS_D3;
float fTemperature_U0;
float fTemperature_D1;
float fTemperature_D2;
float fTemperature_D3;
}ISIFInfo;
typedef struct tagATPDataHeader
{
}ATPDataHeader;
typedef struct tagCalibrationFrame
{
ZZ_U32 uiExposureTimeInMS;
float fTemperature;
int iPixels;
float fWaveLength[4096] = { 0 };
double dCal_Gain[4096] = { 0 };
double dCal_Offset[4096] = { 0 };
}CalFrame;
typedef struct tagCalDataFrame
{
ZZ_U32 usExposureTimeInMS;
float fTemperature = 0;
int iPixels;
float fData[4096];
QString qstrGrabDate;
}CalDataFrame;
}
//misc detector
namespace MISC_DETECTOR
{
typedef struct tagHumitureDeviceInfo
{
QString qstrInterfaceName;
}HumitureDeviceInfo;
}
};