第一次提交

实现了线性回归:将康宁给的有效窗口和波长文件 →(转化) 为y=ax+b 的参数a、b;
This commit is contained in:
tangchao0503
2022-07-04 12:44:13 +08:00
commit 4ade029d2d
2 changed files with 331 additions and 0 deletions

243
.gitignore vendored Normal file
View File

@ -0,0 +1,243 @@
# tc
/.idea
*.xlsx
*.cal
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# AWS User-specific
.idea/**/aws.xml
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# SonarLint plugin
.idea/sonarlint/
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser

88
main.py Normal file
View File

@ -0,0 +1,88 @@
# https://www.cnblogs.com/vachester/p/7202793.html
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
def get_data(file_name):
# data = pd.read_csv(file_name, header = None)
# data = pd.read_excel(file_name)
# X_parameter = []
# Y_parameter = []
# for single_square_feet, single_price_value in zip(data['square_feet'], data['price']):
# X_parameter.append([float(single_square_feet)])
# Y_parameter.append(float(single_price_value))
row = list(range(340, 340 + 300))
wave = [399.959, 401.958, 403.958, 405.957, 407.957, 409.957, 411.956, 413.956, 415.955, 417.955, 419.954, 421.954,
423.954, 425.953, 427.953, 429.952, 431.952, 433.951, 435.951, 437.951, 439.95, 441.95, 443.949, 445.949,
447.948, 449.948, 451.947, 453.947, 455.947, 457.946, 459.946, 461.945, 463.945, 465.944, 467.944, 469.944,
471.943, 473.943, 475.942, 477.942, 479.941, 481.941, 483.94, 485.94, 487.94, 489.939, 491.939, 493.938,
495.938, 497.937, 499.937, 501.937, 503.936, 505.936, 507.935, 509.935, 511.934, 513.934, 515.933, 517.933,
519.933, 521.932, 523.932, 525.931, 527.931, 529.93, 531.93, 533.93, 535.929, 537.929, 539.928, 541.928,
543.927, 545.927, 547.927, 549.926, 551.926, 553.925, 555.925, 557.924, 559.924, 561.923, 563.923, 565.923,
567.922, 569.922, 571.921, 573.921, 575.92, 577.92, 579.92, 581.919, 583.919, 585.918, 587.918, 589.917,
591.917, 593.917, 595.916, 597.916, 599.915, 601.915, 603.914, 605.914, 607.913, 609.913, 611.913, 613.912,
615.912, 617.911, 619.911, 621.91, 623.91, 625.909, 627.909, 629.909, 631.908, 633.908, 635.907, 637.907,
639.906, 641.906, 643.906, 645.905, 647.905, 649.904, 651.904, 653.903, 655.903, 657.903, 659.902, 661.902,
663.901, 665.901, 667.9, 669.9, 671.899, 673.899, 675.899, 677.898, 679.898, 681.897, 683.897, 685.896,
687.896, 689.896, 691.895, 693.895, 695.894, 697.894, 699.893, 701.893, 703.893, 705.892, 707.892, 709.891,
711.891, 713.89, 715.89, 717.889, 719.889, 721.889, 723.888, 725.888, 727.887, 729.887, 731.886, 733.886,
735.886, 737.885, 739.885, 741.884, 743.884, 745.883, 747.883, 749.883, 751.882, 753.882, 755.881, 757.881,
759.88, 761.88, 763.879, 765.879, 767.879, 769.878, 771.878, 773.877, 775.877, 777.876, 779.876, 781.876,
783.875, 785.875, 787.874, 789.874, 791.873, 793.873, 795.872, 797.872, 799.872, 801.871, 803.871, 805.87,
807.87, 809.869, 811.869, 813.869, 815.868, 817.868, 819.867, 821.867, 823.866, 825.866, 827.866, 829.865,
831.865, 833.864, 835.864, 837.863, 839.863, 841.862, 843.862, 845.862, 847.861, 849.861, 851.86, 853.86,
855.859, 857.859, 859.858, 861.858, 863.858, 865.857, 867.857, 869.856, 871.856, 873.855, 875.855, 877.855,
879.854, 881.854, 883.853, 885.853, 887.852, 889.852, 891.852, 893.851, 895.851, 897.85, 899.85, 901.849,
903.849, 905.848, 907.848, 909.848, 911.847, 913.847, 915.846, 917.846, 919.845, 921.845, 923.845, 925.844,
927.844, 929.843, 931.843, 933.842, 935.842, 937.841, 939.841, 941.841, 943.84, 945.84, 947.839, 949.839,
951.838, 953.838, 955.838, 957.837, 959.837, 961.836, 963.836, 965.835, 967.835, 969.835, 971.834, 973.834,
975.833, 977.833, 979.832, 981.832, 983.831, 985.831, 987.831, 989.83, 991.83, 993.829, 995.829, 997.828]
row_bin2 = list(range(170, 170 + 150))
wave_bin2 = []
for i in range(0, len(wave), 2):
# print(i)
# print(wave[i:i + 2])
wave_bin2.append((wave[i] + wave[i+1])/2)
X_parameter = []
Y_parameter = []
for single_square_feet, single_price_value in zip(row_bin2, wave_bin2):
X_parameter.append([float(single_square_feet)])
Y_parameter.append(float(single_price_value))
return X_parameter, Y_parameter
def plot(x, y, regre):
plt.scatter(x, y, color='blue')
plt.plot(x, regre.predict(x), color='red', linewidth=4)
# plt.xticks(())
# plt.yticks(())
plt.show()
def linearRegression(X_parameters, Y_parameters):#
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters)
# 绘图
plot(X_parameters, Y_parameters, regr)
return regr
if __name__ == "__main__":
x, y = get_data(r'D:\PycharmProjects\linear_regression\123.xlsx')
regr = linearRegression(x, y)
yPredicted = []
for i in x:
xxxx = regr.predict(i[0])
yPredicted.append(xxxx[0])
print("Intercept value ", regr.intercept_)
print("coefficient", regr.coef_)