实现水体含量反演程序。

This commit is contained in:
tangchao0503
2025-01-06 10:18:08 +08:00
parent 7c1f83308d
commit 772663a03c
16 changed files with 1903 additions and 0 deletions

142
extract_water_area.py Normal file
View File

@ -0,0 +1,142 @@
from util import *
from osgeo import gdal
import argparse
def xml2shp():
pass
def rasterize_envi_xml(shp_filepath):
pass
@timeit
def rasterize_shp(shp_filepath, raster_fn_out, img_path, NoData_value=0):
dataset = gdal.Open(img_path)
im_width = dataset.RasterXSize
im_height = dataset.RasterYSize
geotransform = dataset.GetGeoTransform()
imgdata_in = dataset.GetRasterBand(1).ReadAsArray()
del dataset
# Open the data source and read in the extent
source_ds = gdal.OpenEx(shp_filepath)
# about 25 metres(ish) use 0.001 if you want roughly 100m
pixel_size = geotransform[1]
raster_fn_out_tmp = append2filename(raster_fn_out, "_tmp_delete")
gdal.Rasterize(raster_fn_out_tmp, source_ds, format='envi', outputType=gdal.GDT_Byte,
noData=NoData_value, initValues=NoData_value, xRes=pixel_size, yRes=-pixel_size, allTouched=True,
burnValues=1)
dataset_tmp = gdal.Open(raster_fn_out_tmp)
geotransform_tmp = dataset_tmp.GetGeoTransform()
inv_geotransform_tmp = gdal.InvGeoTransform(geotransform_tmp)
data_tmp = dataset_tmp.GetRasterBand(1).ReadAsArray()
del dataset_tmp
# 创建和输入影像相同行列号、相同分辨率的水域掩膜,方便后续使用
water_mask = np.zeros((im_height, im_width))
for row in range(im_height):
for column in range(im_width):
coor = gdal.ApplyGeoTransform(geotransform, column, row)
coor_pixel = gdal.ApplyGeoTransform(inv_geotransform_tmp, coor[0], coor[1])
coor_pixel = [int(num) for num in coor_pixel]
if coor_pixel[0] < 0 or coor_pixel[0] >= data_tmp.shape[1]:
continue
if coor_pixel[1] < 0 or coor_pixel[1] >= data_tmp.shape[0]:
continue
if imgdata_in[row, column] == 0: # 当shp区域比影像区域大时略过
continue
water_mask[row, column] = data_tmp[coor_pixel[1], coor_pixel[0]]
write_bands(img_path, raster_fn_out, water_mask)
os.remove(raster_fn_out_tmp)
def calculate_NDWI(green_bandnumber, nir_bandnumber, filename):
dataset = gdal.Open(filename) # 打开文件
num_bands = dataset.RasterCount # 栅格矩阵的波段数
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
im_proj = dataset.GetProjection() # 地图投影信息
tmp = dataset.GetRasterBand(green_bandnumber + 1) # 波段计数从1开始
band_green = tmp.ReadAsArray().astype(np.int16)
tmp = dataset.GetRasterBand(nir_bandnumber + 1) # 波段计数从1开始
band_nir = tmp.ReadAsArray().astype(np.int16)
ndwi = (band_green - band_nir) / (band_green + band_nir)
del dataset
return ndwi
def extract_water(ndwi, threshold=0.3, data_ignore_value=0):
water_region = np.where(ndwi > threshold, 1, data_ignore_value)
return water_region
def ndwi(file_path, ndwi_threshold=0.4, output_path=None, data_ignore_value=0):
if output_path is None:
output_path = append2filename(file_path, "_waterarea")
dataset_in = gdal.Open(file_path)
im_width_in = dataset_in.RasterXSize # 栅格矩阵的列数
im_height_in = dataset_in.RasterYSize # 栅格矩阵的行数
num_bands_in = dataset_in.RasterCount # 栅格矩阵的波段数
geotrans_in = dataset_in.GetGeoTransform() # 仿射矩阵
proj_in = dataset_in.GetProjection() # 地图投影信息
del dataset_in
green_wave = 552.19
nir_wave = 809.2890
green_band_number = find_band_number(green_wave, file_path)
nir_band_number = find_band_number(nir_wave, file_path)
ndwi = calculate_NDWI(green_band_number, nir_band_number, file_path)
water_binary = extract_water(ndwi, threshold=ndwi_threshold) # 0.4
write_bands(file_path, output_path, water_binary)
return output_path
def main():
parser = argparse.ArgumentParser(description="此程序用于提取水域区域,输出的水域栅格和输入的影像具有相同的行列数。")
# parser.add_argument("--global_arg", type=str, help="A global argument for all modes", required=True)
# 创建子命令解析器
subparsers = parser.add_subparsers(dest="algorithm", required=True, help="Choose a mode")
rasterize_shp_ = subparsers.add_parser("rasterize_shp", help="Mode 1 description")
rasterize_shp_.add_argument('-i1', '--img_path', type=str, required=True, help='输入影像文件的路径')
rasterize_shp_.add_argument('-i2', '--shp_path', type=str, required=True, help='输入shp文件的路径')
rasterize_shp_.add_argument('-o', '--water_mask_outpath', required=True, type=str, help='输出水体掩膜文件的路径')
rasterize_shp_.set_defaults(func=rasterize_shp)
ndwi_ = subparsers.add_parser("ndwi", help="Mode 2 description")
ndwi_.add_argument('-i1', '--img_path', type=str, required=True, help='输入影像文件的路径')
ndwi_.add_argument('-i2', '--ndwi_threshold', type=float, required=True, help='输入ndwi水体阈值大于此值的为水域')
ndwi_.add_argument('-o', '--water_mask_outpath', required=True, type=str, help='输出水体掩膜文件的路径')
ndwi_.set_defaults(func=ndwi)
# 解析参数
args = parser.parse_args()
if args.algorithm == "rasterize_shp":
args.func(args.shp_path, args.water_mask_outpath, args.img_path)
elif args.algorithm == "ndwi":
args.func(args.img_path, args.ndwi_threshold, args.water_mask_outpath)
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
main()