Files
weatherInstrument/merge_data.py
2022-09-08 17:50:24 +08:00

95 lines
3.2 KiB
Python

import numpy as np
import pandas as pd
import os
from sklearn import datasets, linear_model
import argparse
class GasAnalyzer():
def __init__(self, folderPath):
self.folderPath = folderPath
def read_data(self):
path_list = os.listdir(self.folderPath)
self.validFiles = []
for filename in path_list:
if os.path.splitext(filename)[1] == '.txt':
self.validFiles.append(filename)
# 这两个循环可以合并优化,但不确定是否可以提高性能
names = locals()
self.rowCountsBackup = []
for i, filename in enumerate(self.validFiles):
names[f'df_{i}'] = pd.read_csv(self.folderPath + "\\" + filename, skiprows=1, sep=',')
self.rowCountsBackup.append(names[f'df_{i}'].shape[0])
for x in range(len(self.rowCountsBackup)):
if(x==0):
self.df_total = names[f'df_{0}']
else:
self.df_total = pd.concat([self.df_total, names[f'df_{x}']])
if(sum(self.rowCountsBackup) != self.df_total.shape[0]):
print("拼接气体分析仪数据失败!拼接前后行数不一致!")
return 1
return 0
def write_data(self):
a = 1
def merge_data(self, MeteorologicalStation):
a = 1
class MeteorologicalStation():
def __init__(self, folderPath):
self.folderPath = folderPath
def read_data(self):
path_list = os.listdir(self.folderPath)
self.validFiles = []
for filename in path_list:
if os.path.splitext(filename)[1] == '.dat':
self.validFiles.append(filename)
# 这两个循环可以合并优化,但不确定是否可以提高性能
names = locals()
self.rowCountsBackup = []
for i, filename in enumerate(self.validFiles):
names[f'df_{i}'] = pd.read_csv(self.folderPath + "\\" + filename, header=None, sep=',')
self.rowCountsBackup.append(names[f'df_{i}'].shape[0])
for x in range(len(self.rowCountsBackup)):
if(x==0):
self.df_total = names[f'df_{0}']
else:
self.df_total = pd.concat([self.df_total, names[f'df_{x}']])
if(sum(self.rowCountsBackup) != self.df_total.shape[0]):
print("拼接气体分析仪数据失败!拼接前后行数不一致!")
return 1
return 0
if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("csv_path", help="Path of csv file which contains wavelength.")
# parser.add_argument("start_row", help="Start row of coning 410 sensor.")
# args = parser.parse_args()
# row_bin1, wave_bin1, row_bin2, wave_bin2 = read_data(args.csv_path, int(args.start_row))
GasAnalyzer_folderPath = r"D:\PycharmProjects\weatherInstrument\2022neimengdata\气体分析仪\2022-08-13"
MeteorologicalStation_folderPath = r"D:\PycharmProjects\weatherInstrument\2022neimengdata\气象站\2022_08_13"
tmp1 = GasAnalyzer(GasAnalyzer_folderPath)
tmp1.read_data()
tmp2 = MeteorologicalStation(MeteorologicalStation_folderPath)
tmp2.read_data()
print("completed!!")